Boundary value problems for a second-order elliptic partial differential equation system in Euclidean space

被引:7
|
作者
Santiesteban, Daniel Alfonso [1 ]
Blaya, Ricardo Abreu [1 ,2 ]
Reyes, Juan Bory [3 ]
机构
[1] Univ Autonoma Guerrero, Chilpancingo, Mexico
[2] Investigador Invitado Univ UTE, Quito, Ecuador
[3] Inst Politecn Nacl, Mexico City, Mexico
关键词
boundary value problems; Clifford analysis; elliptic systems; spectral properties; HELMHOLTZ-HODGE DECOMPOSITION; INFRAMONOGENIC FUNCTIONS;
D O I
10.1002/mma.9426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let omega subset of Double-struck capital Rm$$ \Omega \subset {\mathrm{\mathbb{R}}}<^>m $$ be a bounded regular domain, let partial differential x_$$ {\partial}_{\underset{\_}{x}} $$ be the standard Dirac operator in Double-struck capital Rm$$ {\mathrm{\mathbb{R}}}<^>m $$, and let Double-struck capital R0,m$$ {\mathrm{\mathbb{R}}}_{0,m} $$ be the Clifford algebra constructed over the quadratic space Double-struck capital R0,m$$ {\mathrm{\mathbb{R}}}<^>{0,m} $$. For k is an element of{1, horizontal ellipsis ,m}$$ k\in \left\{1,\dots, m\right\} $$ fixed, Double-struck capital R0,m(k)$$ {\mathrm{\mathbb{R}}}_{0,m}<^>{(k)} $$ denotes the space of k$$ k $$-vectors in Double-struck capital R0,m$$ {\mathrm{\mathbb{R}}}_{0,m} $$. In the framework of Clifford analysis, we consider two boundary value problems for a second-order elliptic system of partial differential equations of the form partial differential x_Fk partial differential x_=fk$$ {\partial}_{\underset{\_}{x}}{F}_k{\partial}_{\underset{\_}{x}}={f}_k $$ in omega$$ \Omega $$, where fk$$ {f}_k $$ is a smooth k$$ k $$-vector valued function. The boundary conditions of the problems contain the inner and outer products of the k$$ k $$-vector solution Fk$$ {F}_k $$ with both the Dirac operator and the normal vector to partial differential omega$$ \mathrm{\partial \Omega } $$, ensuring the well-posedness for the problems. Investigation of the spectral properties of the sandwich operator partial differential x_(.) partial differential x_$$ {\partial}_{\underset{\_}{x}}(.){\partial}_{\underset{\_}{x}} $$ is considered by using the Fredholm theory. Finally, it is shown that satisfactory problem-solving properties, in general, fail when we replace the standard Dirac operator by those, obtained via unusual orthogonal bases of Double-struck capital Rm$$ {\mathrm{\mathbb{R}}}<^>m $$.
引用
收藏
页码:15784 / 15798
页数:15
相关论文
共 50 条