A multi-view attention-based spatial-temporal network for airport arrival flow prediction

被引:15
|
作者
Yan, Zhen [1 ]
Yang, Hongyu [2 ]
Wu, Yuankai [2 ]
Lin, Yi [2 ]
机构
[1] Sichuan Univ, Natl Key Lab Fundamental Sci Synthet Vis, Chengdu 610000, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
Airport arrival flow prediction; Deep learning; Spatial-temporal dependencies; Multi-view attention mechanism; Graph neural network; CELL TRANSMISSION MODEL;
D O I
10.1016/j.tre.2022.102997
中图分类号
F [经济];
学科分类号
02 ;
摘要
Accurate airport arrival flow prediction is a precondition for intelligent air traffic flow management. However, most existing studies focus on the dynamic traffic flow in a single-airport scenario, which usually ignores the spatial interactions among airports. Modelling network-wide spatial dependencies among airports is difficult because it requires models to consider multiple underlying factors jointly. We propose a multi-view fusion approach to automatically learn an adjacency matrix from flight duration and flight schedule factors. The learned adjacency matrix is then fed into a specially designed graph convolutional block, which governs the message passing process among airports. Finally, the graph convolutional block with the learned adjacency matrix is embedded into the gated recurrent units to capture temporal dependencies. Experimental results on a real-world dataset for the multistep prediction task show the effectiveness and efficacy of the proposed model. In addition, visualisation and analysis of the learned adjacency matrix verify that the proposed multi-view fusion approach is capable of learning informative spatial interaction patterns.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Network Traffic Prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Lin, Junda
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [2] Network traffic prediction with Attention-based Spatial-Temporal Graph Network
    Peng, Yufei
    Guo, Yingya
    Hao, Run
    Xu, Chengzhe
    COMPUTER NETWORKS, 2024, 243
  • [3] Multi-View Spatial-Temporal Graph Neural Network for Traffic Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Huang, HongJie
    Yun, JinPeng
    Huang, LongJi
    COMPUTER JOURNAL, 2023, 66 (10): : 2393 - 2408
  • [4] Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
    Yao, Huaxiu
    Wu, Fei
    Ke, Jintao
    Tang, Xianfeng
    Jia, Yitian
    Lu, Siyu
    Gong, Pinghua
    Ye, Jieping
    Li, Zhenhui
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2588 - 2595
  • [5] Attention-Based Spatial-Temporal Fusion Networks for Traffic Flow Prediction
    Wang, Jiaying
    Yang, Heng
    Shan, Jing
    Jiang, Junyi
    Song, Xiaoxu
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 500 - 511
  • [6] MVSTGN: A Multi-View Spatial-Temporal Graph Network for Cellular Traffic Prediction
    Yao, Yang
    Gu, Bo
    Su, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (05) : 2837 - 2849
  • [7] Traffic accident prediction method based on multi-view spatial-temporal learning
    Feng, Jian
    Liu, Tian
    Qiao, Yuqiang
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2024, 72 (06)
  • [8] Multi-View Gait Recognition Based on a Spatial-Temporal Deep Neural Network
    Tong, Suibing
    Fu, Yuzhuo
    Yue, Xinwei
    Ling, Hefei
    IEEE ACCESS, 2018, 6 : 57583 - 57596
  • [9] Multi-view Cascading Spatial-Temporal Graph Neural Network for Traffic Flow Forecasting
    Liu, Zibo
    Fu, Kaiqun
    Liu, Xiaotong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 605 - 616
  • [10] An Attention-Based Spatial-Temporal Traffic Flow Prediction Method with Pattern Similarity Analysis
    Yang, Liankun
    Zhang, Yaying
    Zuo, Jiankai
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3710 - 3717