Cross-Subject Transfer Learning for Boosting Recognition Performance in SSVEP-Based BCIs

被引:11
|
作者
Zhang, Yue [1 ]
Xie, Sheng Quan [1 ]
Shi, Chaoyang [2 ]
Li, Jun [3 ]
Zhang, Zhi-Qiang [1 ]
机构
[1] Univ Leeds, Inst Robot Autonomous Syst & Sensing, Sch Elect & Elect Engn, Leeds LS2 9JT, England
[2] Tianjin Univ, Sch Mech Engn, Tianjin 300072, Peoples R China
[3] Hubei Minzu Univ, Coll Intelligent Syst Sci & Engn, Enshi 445000, Hubei, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Spatial filters; Visualization; Training; Transfer learning; Correlation; Electroencephalography; Signal to noise ratio; Brain-computer interface (BCI); electroencephalography (EEG); steady-state visual evoked potential (SSVEP); transfer learning; cross-subject; ENHANCING DETECTION; BRAIN; EEG;
D O I
10.1109/TNSRE.2023.3250953
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have been substantially studied in recent years due to their fast communication rate and high signal-to-noise ratio. The transfer learning is typically utilized to improve the performance of SSVEP-based BCIs with auxiliary data from the source domain. This study proposed an inter-subject transfer learning method for enhancing SSVEP recognition performance through transferred templates and transferred spatial filters. In our method, the spatial filter was trained via multiple covariance maximization to extract SSVEP-related information. The relationships between the training trial, the individual template, and the artificially constructed reference are involved in the training process. The spatial filters are applied to the above templates to form two new transferred templates, and the transferred spatial filters are obtained accordingly via the least-square regression. The contribution scores of different source subjects can be calculated based on the distance between the source subject and the target subject. Finally, a four-dimensional feature vector is constructed for SSVEP detection. To demonstrate the effectiveness of the proposed method, a publicly available dataset and a self-collected dataset were employed for performance evaluation. The extensive experimental results validated the feasibility of the proposed method for improving SSVEP detection.
引用
收藏
页码:1574 / 1583
页数:10
相关论文
共 50 条
  • [1] Cross-Subject Transfer Method Based on Domain Generalization for Facilitating Calibration of SSVEP-Based BCIs
    Huang, Jiayang
    Zhang, Zhi-Qiang
    Xiong, Bang
    Wang, Quan
    Wan, Bo
    Li, Fengqi
    Yang, Pengfei
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3307 - 3319
  • [2] Cross-Subject Assistance: Inter- and Intra-Subject Maximal Correlation for Enhancing the Performance of SSVEP-Based BCIs
    Wang, Haoran
    Sun, Yaoru
    Wang, Fang
    Cao, Lei
    Zhou, Wei
    Wang, Zijian
    Chen, Shiyi
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 517 - 526
  • [3] An improved cross-subject spatial filter transfer method for SSVEP-based BCI
    Yan, Wenqiang
    Wu, Yongcheng
    Du, Chenghang
    Xu, Guanghua
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (04)
  • [4] Facilitating Applications of SSVEP-Based BCIs by Within-Subject Information Transfer
    Liu, Xiaobing
    Liu, Bingchuan
    Dong, Guoya
    Gao, Xiaorong
    Wang, Yijun
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [5] A Canonical Correlation Analysis-Based Transfer Learning Framework for Enhancing the Performance of SSVEP-Based BCIs
    Wei, Qingguo
    Zhang, Yixin
    Wang, Yijun
    Gao, Xiaorong
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 2809 - 2821
  • [6] An Analysis on the Effect of Phase on the Performance of SSVEP-Based BCIs
    Gauci, Norbert
    Falzon, Owen
    Camilleri, Tracey
    Camilleri, Kenneth
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 134 - 139
  • [7] Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
    Lin, Zhonglin
    Zhang, Changshui
    Wu, Wei
    Gao, Xiaorong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (12) : 2610 - 2614
  • [8] Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
    Lin, Zhonglin
    Zhang, Changshui
    Wu, Wei
    Gao, Xiaorong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (06) : 1172 - 1176
  • [9] Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs
    Mehdizavareh, Mohammad Hadi
    Hemati, Sobhan
    Soltanian-Zadeh, Hamid
    PLOS ONE, 2020, 15 (01):
  • [10] Cross-subject fusion based on time-weighting canonical correlation analysis in SSVEP-BCIs
    Sun, Ying
    Ding, Wenzheng
    Liu, Xiaolin
    Zheng, Dezhi
    Chen, Xinlei
    Hui, Qianxin
    Na, Rui
    Wang, Shuai
    Fan, Shangchun
    MEASUREMENT, 2022, 199