Iron-arsenide monolayers as an anode material for lithium-ion batteries: a first-principles study

被引:2
|
作者
Kumar, Ajay [1 ]
Parida, Prakash [1 ]
机构
[1] Indian Inst Technol Patna, Dept Phys, Bihta, Bihar, India
关键词
LAYERED SUPERCONDUCTOR; ELECTRONIC-PROPERTIES; 1ST PRINCIPLES; CUBIC PHASE; LI; MOS2; TRANSITION; STABILITY; DIFFUSION; STORAGE;
D O I
10.1039/d4cp00062e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This theoretical investigation delves into the structural, electronic, and electrochemical properties of two hexagonal iron-arsenide monolayers, 1T-FeAs and 1H-FeAs, focusing on their potential as anode materials for lithium-ion batteries. Previous studies have highlighted the ferromagnetic nature of 1T-FeAs at room temperature. Our calculations reveal that both phases exhibit metallic behaviour with spin-polarized electronic band structures. Electrochemical studies show that the 1T-FeAs monolayer has better ionic conductivity for Li ions than the 1H-FeAs phase, attributed to a lower activation barrier of 0.38 eV. This characteristic suggests a faster charge/discharge rate. Both FeAs phases exhibit comparable theoretical capacities (374 mA h g-1), outperforming commercial graphite anodes. The average open-circuit voltage for maximum Li atom adsorption is 0.61 V for 1H-FeAs and 0.44 V for 1T-FeAs. The volume expansion over the maximum adsorption of Li atoms on both phases is also remarkably less than the commercially used anode material such as graphite. Furthermore, the adsorption of Li atoms onto 1H-FeAs induces a remarkable transition from ferromagnetism to anti-ferromagnetism, with minimal impact on the electronic band structure. In contrast, the original state of 1T-FeAs remains unaffected by Li adsorption. To summarize, both 1T-FeAs and 1H-FeAs monolayers have potential as promising anode materials for lithium-ion batteries, offering valuable insights into their electrochemical performance and phase transition behaviour upon Li adsorption. Schematic diagram of FeAs monolayer as an anode material for rechargeable Li-ion batteries.
引用
收藏
页码:12060 / 12069
页数:10
相关论文
共 50 条
  • [1] First-principles study of borophene/phosphorene heterojunction as anode material for lithium-ion batteries
    Yang, Zhifang
    Li, Wenliang
    Zhang, Jingping
    NANOTECHNOLOGY, 2022, 33 (07)
  • [2] First-principles study of monolayer Be2C as an anode material for lithium-ion batteries
    Yeoh, K. H.
    Chew, K-H
    Chu, Y. Z.
    Yoon, T. L.
    Rusi
    Ong, D. S.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (12)
  • [3] Semi-metallic bilayer borophene for lithium-ion batteries anode material: A first-principles study
    Chen, Miaogen
    Dai, Yilian
    Li, Taotao
    Zhang, Xiaofei
    Li, Can
    Zhang, Jing
    CHEMICAL PHYSICS, 2023, 571
  • [4] Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations
    Wang, Hewen
    Wu, Musheng
    Lei, Xueling
    Tian, Zhengfang
    Xu, Bo
    Huang, Kevin
    Ouyang, Chuying
    NANO ENERGY, 2018, 49 : 67 - 76
  • [5] Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations
    Hu, Junping
    Ouyang, Chuying
    Yang, Shengyuan A.
    Yang, Hui Ying
    NANOSCALE HORIZONS, 2019, 4 (02) : 457 - 463
  • [6] First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries
    Zhang, Ni-Ni
    Ren, Juan
    Luo, Lan-Xi
    Liu, Ping-Ping
    Wuli Xuebao/Acta Physica Sinica, 2024, 73 (21):
  • [7] First principles study of Be-doped graphdiyne as anode material for lithium-ion batteries
    Zhang, Ni-Ni
    Ren, Juan
    Luo, Lan-Xi
    Liu, Ping-Ping
    ACTA PHYSICA SINICA, 2024, 73 (21)
  • [8] First-principles studies on doped graphene as anode materials in lithium-ion batteries
    Wu, D. H.
    Li, Y. F.
    Zhou, Z.
    THEORETICAL CHEMISTRY ACCOUNTS, 2011, 130 (2-3) : 209 - 213
  • [9] First-principles studies on doped graphene as anode materials in lithium-ion batteries
    D. H. Wu
    Y. F. Li
    Z. Zhou
    Theoretical Chemistry Accounts, 2011, 130 : 209 - 213
  • [10] MoSe2 monolayer as a two-dimensional anode material for lithium-ion batteries: A first-principles study
    Liu, Yaning
    Zhang, Xin
    Li, Cong
    Gao, Nan
    Li, Hongdong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 697