Stimuli-Responsive Prodrug Chemistries for Cancer Therapy

被引:10
|
作者
Bargakshatriya, Rupa [1 ,2 ]
Pramanik, Sumit Kumar [1 ,2 ]
机构
[1] CSIR Cent Salt & Marine Chem Res Inst, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
prodrug molecules; Stimuli-responsive; ROS; Enzyme; pH; Photo-responsive; Fluorophore; Theranostics; ORAL FLUOROPYRIMIDINE CARBAMATE; DRUG-DELIVERY; COPOLYMER-DOXORUBICIN; PHOTOTHERMAL THERAPY; GOLD NANOPARTICLES; PHASE-II; LIGHT; RELEASE; FLUORESCENCE; 5-FLUOROURACIL;
D O I
10.1002/cbic.202300155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prodrugs are pharmacologically inactive, chemically modified derivatives of active drugs, which, following in vivo administration, are converted to the parent drugs through chemical or enzymatic cleavage. The prodrug approach holds tremendous potential to create the enhanced version of an existing pharmacological agent and leverage those improvements to augment the drug molecules & PRIME; bioavailability, targeting ability, therapeutic efficacy, safety, and marketability. Especially in cancer therapy, prodrug application has received substantial attention. A prodrug can effectively broaden the therapeutic window of its parent drug by enhancing its release at targeted tumor sites while reducing its access to healthy cells. The spatiotemporally controlled release can be achieved by manipulating the chemical, physical, or biological stimuli present at the targeted tumor site. The critical strategy comprises drug-carrier linkages that respond to physiological or biochemical stimuli in the tumor milieu to yield the active drug form. This review will focus on the recent advancements in the development of various fluorophore-drug conjugates that are widely used for real-time monitoring of drug delivery. The use of different stimuli-cleavable linkers and the mechanisms of linker cleavage will be discussed. Finally, the review will conclude with a critical discussion of the prospects and challenges that might impede the future development of such prodrugs.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Stimuli-Responsive Prodrug Chemistries for Drug Delivery
    Taresco, Vincenzo
    Alexander, Cameron
    Singh, Nishant
    Pearce, Amanda K.
    ADVANCED THERAPEUTICS, 2018, 1 (04)
  • [2] Emerging Strategies in Stimuli-Responsive Prodrug Nanosystems for Cancer Therapy
    Ding, Chendi
    Chen, Chunbo
    Zeng, Xiaowei
    Chen, Hongzhong
    Zhao, Yanli
    ACS NANO, 2022, 16 (09) : 13513 - 13553
  • [3] Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy
    Zhang, Zhiqiang
    Yu, Miao
    An, Tong
    Yang, Jun
    Zou, Meijuan
    Zhai, Yinglei
    Sun, Wei
    Cheng, Gang
    PHARMACEUTICAL RESEARCH, 2020, 37 (01)
  • [4] Tumor Microenvironment Stimuli-Responsive Polymeric Prodrug Micelles for Improved Cancer Therapy
    Zhiqiang Zhang
    Miao Yu
    Tong An
    Jun Yang
    Meijuan Zou
    Yinglei Zhai
    Wei Sun
    Gang Cheng
    Pharmaceutical Research, 2020, 37
  • [5] Stimuli-responsive polymersomes for cancer therapy
    Thambi, Thavasyappan
    Park, Jae Hyung
    Lee, Doo Sung
    BIOMATERIALS SCIENCE, 2016, 4 (01) : 55 - 69
  • [6] Stimuli-responsive ferroptosis for cancer therapy
    Kang, Nayeon
    Son, Subin
    Min, Sunhong
    Hong, Hyunsik
    Kim, Chowon
    An, Jusung
    Kim, Jong Seung
    Kang, Heemin
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (12) : 3955 - 3972
  • [7] Stimuli-responsive polyprodrug for cancer therapy
    Lin C.
    Liang Y.
    Guo M.
    Saw P.E.
    Xu X.
    Materials Today Advances, 2022, 15
  • [8] Stimuli-responsive polyprodrug for cancer therapy
    Lin, C.
    Liang, Yixia
    Guo, Mingyan
    Saw, Phei Er
    Xu, Xiaoding
    MATERIALS TODAY ADVANCES, 2022, 15
  • [9] Stimuli-responsive cancer therapy based on nanoparticles
    Yu, Jing
    Chu, Xin
    Hou, Yanglong
    CHEMICAL COMMUNICATIONS, 2014, 50 (79) : 11614 - 11630
  • [10] Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy
    Chang, Di
    Ma, Yuanyuan
    Xu, Xiaoxuan
    Xie, Jinbing
    Ju, Shenghong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9