In intelligent transportation systems, one key challenge for managing ride-hailing services is the balancing of traffic supply and demand while meeting passenger needs within vehicle availability constraints. Accurate origin-destination (OD) demand predictions can empower platforms to execute timely reallocation of cruising vehicles and improve ride-sharing services. Nonetheless, the complexity of OD-based demand prediction arises from intricate spatiotemporal dependencies and a higher need for precision compared to zone-based predictions, which leads to many unprecedented OD pairs. To tackle this issue, we design a comprehensive set of 102 features, including travel demand, passenger count, travel volume, liveliness, weather, and cross features. We also introduce an enhanced conformer model, which is composed of a single conformer block that integrates feedforward layers, multihead self-attention mechanisms, and depth-wise separable convolution layers. To address the cold-start problem and manage large values, we design a specific algorithm for OD pairs lacking training data and apply a technique to handle larger values. Our approach demonstrates a marked improvement in prediction performance, with an 18% decrease in the total travel demand error and up to a 47% reduction for certain larger values in some cases. Through extensive experiments on a dataset collected from a city, provided by a ride-hailing platform, our proposed methods significantly outperform the most advanced models.