Human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl hydrogel to promote fractional laser injury wound healing

被引:11
|
作者
Zhang, Xinling [1 ]
Ding, Pengbing [1 ]
Chen, Yujie [1 ]
Lin, Zhiyu [1 ]
Zhao, Xun [1 ]
Xie, Hongbin [1 ,2 ]
机构
[1] Peking Univ Third Hosp, Dept Plast Surg, Beijing, Peoples R China
[2] 49 North Garden Rd, Beijing 100191, Peoples R China
关键词
exosomes; fractional laser injury wound; gelatin methacryloyl hydrogel; mesenchymal stem cells; umbilical cord; STROMAL CELLS; ANGIOGENESIS; SCARS;
D O I
10.1111/iwj.14295
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
To investigate whether human umbilical cord mesenchymal stem cell-derived exosomes combined with gelatin methacryloyl (GelMA) hydrogel are beneficial in promoting healing of laser-injured skin wounds in mice. Supernatants of cultured human umbilical cord mesenchymal stem cells (HUC-MSCs) were collected to obtain human umbilical cord MSC-derived exosomes (HUC-MSCs-Exos), which were combined with GelMA hydrogel complex to treat a mouse fractional laser injury model. The study was divided into PBS group, EX (HUC-MSCs-Exos) group, GEL (GelMA hydrogel) group and EX+GEL (HUC-MSCs-Exos combined with GelMA hydrogel) group. The healing of laser-injured skin in each group was observed by gross view and dermatoscopy, and changes in skin structure, angiogenesis and proliferation-related indexes were observed during the healing process of laser-injured skin in each group. The results of the animal experiments showed that the EX and GEL groups alone and the EL+EX group exhibited less inflammatory response compared to the PBS group. The EX and GEL groups showed marked tissue proliferation and favourable angiogenesis, which promoted the wound healing well. The GEL+EX group had the most significant promotion of wound healing compared to the PBS group. qPCR results showed that the expression levels of proliferation-related factors, including KI67 and VEGF and angiogenesis-related factor CD31, were significantly higher in the GEL+EX group than in the other groups, with a time-dependent effect. The combination of HUC-MSCs-Exos and GelMA hydrogel is beneficial in reducing the early inflammatory response of laser-injured skin in mice and promoting its proliferation and angiogenesis, which in turn promotes wound healing.
引用
收藏
页码:4040 / 4049
页数:10
相关论文
共 50 条
  • [1] Human Umbilical Cord Mesenchymal Stem Cell Derived Exosomes Delivered Using Silk Fibroin and Sericin Composite Hydrogel Promote Wound Healing
    Han, Chaoshan
    Liu, Feng
    Zhang, Yu
    Chen, Wenjie
    Luo, Wei
    Ding, Fengzhi
    Lu, Lin
    Wu, Chengjie
    Li, Yangxin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [2] Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration
    Yang, Jiayi
    Chen, Zhiyi
    Pan, Daoyan
    Li, Huaizhi
    Shen, Jie
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 5911 - 5926
  • [3] Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing
    Liu, Yuanyuan
    Zhang, Mingwang
    Liao, Yong
    Chen, Hongbo
    Su, Dandan
    Tao, Yuandong
    Li, Jiangbo
    Luo, Kai
    Wu, Lihua
    Zhang, Xingyue
    Yang, Rongya
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [4] Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Rescue Testicular Aging
    Luo, Peng
    Chen, Xuren
    Gao, Feng
    Xiang, Andy Peng
    Deng, Chunhua
    Xia, Kai
    Gao, Yong
    BIOMEDICINES, 2024, 12 (01)
  • [5] Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes
    Akaitz Dorronsoro
    Paul D Robbins
    Stem Cell Research & Therapy, 4
  • [6] Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes
    Dorronsoro, Akaitz
    Robbins, Paul D.
    STEM CELL RESEARCH & THERAPY, 2013, 4
  • [7] Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Accelerate Diabetic Wound Healing via Ameliorating Oxidative Stress and Promoting Angiogenesis
    Yan, Chenchen
    Xv, Yan
    Lin, Ze
    Endo, Yori
    Xue, Hang
    Hu, Yiqiang
    Hu, Liangcong
    Chen, Lang
    Cao, Faqi
    Zhou, Wu
    Zhang, Peng
    Liu, Guohui
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [8] Human mesenchymal stem cell-derived exosomes accelerate wound healing of mice eczema
    Wang, Miao
    Zhao, Yang
    Zhang, Qingyi
    JOURNAL OF DERMATOLOGICAL TREATMENT, 2022, 33 (03) : 1401 - 1405
  • [9] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    June Seok Heo
    Sinyoung Kim
    Chae Eun Yang
    Youjeong Choi
    Seung Yong Song
    Hyun Ok Kim
    Tissue Engineering and Regenerative Medicine, 2021, 18 : 537 - 548
  • [10] Human Adipose Mesenchymal Stem Cell-Derived Exosomes: A Key Player in Wound Healing
    Heo, June Seok
    Kim, Sinyoung
    Yang, Chae Eun
    Choi, Youjeong
    Song, Seung Yong
    Kim, Hyun Ok
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2021, 18 (04) : 537 - 548