Nonuniqueness of Solutions to the Euler Equations with Vorticity in a Lorentz Space

被引:4
|
作者
Brue, Elia [1 ,2 ]
Colombo, Maria [3 ]
机构
[1] Inst Adv Study, 1 Einstein Dr, Princeton, NJ 05840 USA
[2] Bocconi Univ, Milan, Italy
[3] EPFL B, Stn 8, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1007/s00220-023-04816-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the two dimensional Euler equations, a classical result by Yudovich states that solutions are unique in the class of bounded vorticity; it is a celebrated open problem whether this uniqueness result can be extended in other integrability spaces. We prove in this note that such uniqueness theorem fails in the class of vector fields u with uniformly bounded kinetic energy and vorticity in the Lorentz space L-1,L-8.
引用
收藏
页码:1171 / 1192
页数:22
相关论文
共 50 条