rcCAE: a convolutional autoencoder method for detecting intra-tumor heterogeneity and single-cell copy number alterations

被引:4
|
作者
Yu, Zhenhua [1 ]
Liu, Furui [1 ]
Shi, Fangyuan [1 ]
Du, Fang [1 ]
机构
[1] Ningxia Univ, Sch Informat Engn, Yinchuan 750021, Ningxia, Peoples R China
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
Autoencoder; Hidden Markov model; Copy number alteration; Single-cell sequencing; EVOLUTION; HETEROZYGOSITY;
D O I
10.1093/bib/bbad108
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Intra-tumor heterogeneity (ITH) is one of the major confounding factors that result in cancer relapse, and deciphering ITH is essential for personalized therapy. Single-cell DNA sequencing (scDNA-seq) now enables profiling of single-cell copy number alterations (CNAs) and thus aids in high-resolution inference of ITH. Here, we introduce an integrated framework called rcCAE to accurately infer cell subpopulations and single-cell CNAs from scDNA-seq data. A convolutional autoencoder (CAE) is employed in rcCAE to learn latent representation of the cells as well as distill copy number information from noisy read counts data. This unsupervised representation learning via the CAE model makes it convenient to accurately cluster cells over the low-dimensional latent space, and detect single-cell CNAs from enhanced read counts data. Extensive performance evaluations on simulated datasets show that rcCAE outperforms the existing CNA calling methods, and is highly effective in inferring clonal architecture. Furthermore, evaluations of rcCAE on two real datasets demonstrate that it is able to provide a more refined clonal structure, of which some details are lost in clonal inference based on integer copy numbers.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Single-cell technologies uncover intra-tumor heterogeneity in childhood cancers
    Lo, Yu-Chen
    Liu, Yuxuan
    Kammersgaard, Marte
    Koladiya, Abhishek
    Keyes, Timothy J.
    Davis, Kara L.
    [J]. SEMINARS IN IMMUNOPATHOLOGY, 2023, 45 (01) : 61 - 69
  • [2] Evaluation of intra-tumor heterogeneity by single-cell copy number profiling of circulating multiple myeloma cells using Shannon index.
    Ferrarini, Alberto
    Forcato, Claudio
    del Monaco, Valentina
    Terracciano, Mario
    Garonzi, Marianna
    Pellicano, Massimiliano
    Buson, Genny
    Fontana, Francesca
    Tononi, Paola
    Manaresi, Nicolo
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [3] Single-cell technologies uncover intra-tumor heterogeneity in childhood cancers
    Yu-Chen Lo
    Yuxuan Liu
    Marte Kammersgaard
    Abhishek Koladiya
    Timothy J. Keyes
    Kara L. Davis
    [J]. Seminars in Immunopathology, 2023, 45 : 61 - 69
  • [4] Identifying effective single-cell sequencing strategies for intra-tumor heterogeneity estimation
    Alves, J.
    [J]. EUROPEAN JOURNAL OF CANCER, 2016, 61 : S33 - S33
  • [5] Single-Cell Transcriptomics Identifies Intra-Tumor Heterogeneity in Human Myeloma Cell Lines
    Mitra, Amit Kumar
    Stessman, Holly
    Linden, Michael A.
    Van Ness, Brian
    [J]. BLOOD, 2014, 124 (21)
  • [6] Dissecting Intra-Tumor Heterogeneity by the Analysis of Copy Number Variations in Single Cells: The Neuroblastoma Case Study
    Cariati, Federica
    Borrillo, Francesca
    Shankar, Varun
    Nunziato, Marcella
    D'Argenio, Valeria
    Tomaiuolo, Rossella
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (04):
  • [7] SINGLE-CELL TRANSCRIPTOMIC ANALYSIS OF PEDIATRIC BURKITT LYMPHOMA REVEALS INTRA-TUMOR HETEROGENEITY
    Corinaldesi, C.
    Gallingani, I.
    Holmes, A.
    Lovisa, F.
    Carraro, E.
    Pillon, M.
    Dalla-Favera, R.
    Basso, K.
    Mussolin, L.
    [J]. LEUKEMIA RESEARCH, 2022, 121 : S22 - S23
  • [8] A single-cell analysis reveals intra-tumor heterogeneity and immune environment of testicular seminoma
    Wang, W.
    Chen, G.
    Yang, L.
    [J]. EUROPEAN UROLOGY, 2024, 85 : S733 - S733
  • [9] Cracking the pattern of tumor evolution based on single-cell copy number alterations
    Wang, Ying
    Zhang, Min
    Shi, Jian
    Zhu, Yue
    Wang, Xin
    Zhang, Shaojun
    Wang, Fang
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [10] Assessment of intra-tumor heterogeneity in breast cancer by single-cell ATAC-seq analysis
    Kumegawa, Kohei
    Takahashi, Yoko
    Saeki, Sumito
    Yang, Liying
    Otsuji, Kazutoshi
    Nakadai, Tomoyoshi
    Ohno, Shinji
    Ueno, Takayuki
    Maruyama, Reo
    [J]. CANCER SCIENCE, 2021, 112 : 447 - 447