Machine learning-assisted modelling of stress concentration factor of unidirectional fiber composites for predicting their tensile strength

被引:5
|
作者
Choi, Jae-Hyuk [1 ]
Na, Wonjin [2 ]
Yu, Woong-Ryeol [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, MSE & Res Inst Adv Mat RIAM, Seoul 08826, South Korea
[2] Korea Inst Sci & Technol KIST, Composite Mat Applicat Res Ctr, Jeonbuk 55324, South Korea
基金
新加坡国家研究基金会;
关键词
unidirectional composite; tensile strength; machine learning; artificial neural network; stress concentration factor; random fiber array; ARTIFICIAL NEURAL-NETWORK; MULTIPLE LINEAR-REGRESSION; COMPRESSIVE STRENGTH; COMPUTED-TOMOGRAPHY; MECHANICAL-PROPERTIES; SIMULATION; FAILURE; FRACTURE; ARRANGEMENT; POROSITY;
D O I
10.1088/1361-651X/acaaf8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Significant variations in the tensile strength of unidirectional (UD) fiber-reinforced composites are frequently observed due to randomness in the fiber arrays. Herein, we propose a novel method for predicting tensile strength capable of quantifying uncertainty based on a new recurrence relation for fiber fracture propagation and a determination algorithm for the fracture sequence for random fiber arrays (RFAs). We performed finite element simulations, calculating the stress concentration factor (SCF) for UD composites with various RFAs. Then, we trained an artificial neural network with the obtained SCF data and used it to predict the SCF for composites with an arbitrary RFA. The tensile strength of UD composites was predicted over a range of values, demonstrating that accuracy was superior to conventional prediction methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites
    Sadat, Tarik
    APPLIED MECHANICS, 2023, 4 (02): : 752 - 762
  • [2] Considering the stress concentration of fiber surfaces in the prediction of the tensile strength of unidirectional carbon fiber-reinforced plastic composites
    Yamamoto, Go
    Onodera, Miho
    Koizumi, Keita
    Watanabe, Jun
    Okuda, Haruki
    Tanaka, Fumihiko
    Okabe, Tomonaga
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 121 : 499 - 509
  • [3] Analytical model for predicting the tensile strength of unidirectional composites based on the density of fiber breaks
    Vanegas-Jaramillo, J. D.
    Turon, A.
    Costa, J.
    Cruz, L. J.
    Mayugo, J. A.
    COMPOSITES PART B-ENGINEERING, 2018, 141 : 84 - 91
  • [4] THE TENSILE-STRENGTH OF UNIDIRECTIONAL FIBER-REINFORCED COMPOSITES
    BAZHENOV, SL
    BERLIN, AA
    DOKLADY AKADEMII NAUK SSSR, 1985, 283 (06): : 1386 - 1390
  • [5] Local stress concentration and the prediction of tensile failure in unidirectional composites
    Mahiou, H
    Beakou, A
    COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (12) : 1661 - 1672
  • [6] Local stress concentration and the prediction of tensile failure in unidirectional composites
    Lab. Rech. Applic. en Mecan. Avancee, Campus des Cézeaux, B.P. 265, F-63175 Aubière Cedex, France
    Compos Sci Technol, 12 (1661-1672):
  • [7] A micromechanics model for predicting the tensile strength of unidirectional metal matrix composites
    Subramanian, S
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1997, 16 (08) : 676 - 685
  • [8] Prediction of the tensile strength of unidirectional carbon fiber composites considering the interfacial shear strength
    Na, Wonjin
    Lee, Geunsung
    Sung, Minchang
    Han, Heung Nam
    Yu, Woong-Ryeol
    COMPOSITE STRUCTURES, 2017, 168 : 92 - 103
  • [9] PREDICTION OF TENSILE STRENGTH OF UNIDIRECTIONAL CARBON FIBER COMPOSITES CONSIDERING THE INTERFACIAL SHEAR STRENGTH
    Na, Wonjin
    Lee, Geunsung
    Sung, Minchang
    Yu, Woong-Ryeol
    20TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 2015,
  • [10] Predicting Mechanical Properties of Unidirectional Composites Using Machine Learning
    Hao-Syuan Chang
    Jou-Hua Huang
    Jia-Lin Tsai
    Multiscale Science and Engineering, 2022, 4 (4) : 202 - 210