Data-driven distributionally robust optimization under combined ambiguity for cracking production scheduling

被引:2
|
作者
Zhang, Chenhan [1 ]
Wang, Zhenlei [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Data-driven decision making; Distributionally robust optimization; Moment information; Wasserstein distance; Cyclic scheduling; SYSTEMS; MOMENT;
D O I
10.1016/j.compchemeng.2023.108538
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Distributionally robust optimization has garnered significant attention for its effectiveness in decision-making under uncertainty. However, employing this strategy faces hurdles posed by intractable models and the difficulty in parameter determination while tackling production scheduling issues under uncertainty. This work presents a novel data-driven distributionally robust optimization framework to address these challenges. data-driven combined ambiguity set, which incorporates Wasserstein distance and moment information, devised to yield less conservative solutions. Additionally, a data-driven support set established based on improved kernel technique is introduced to help identify and exclude potential outliers. The relevant ambiguous parameters are determined through bi-level cross-validation. Subsequently, the data-driven distributionally robust optimization model under combined ambiguity is reformulated into tractable by dual theory. The application to industrial scheduling shows that the proposed method can effectively utilize data information and better hedge against uncertainties while obtaining higher profits.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Data-Driven Distributionally Robust CVaR Portfolio Optimization Under A Regime-Switching Ambiguity Set
    Pun, Chi Seng
    Wang, Tianyu
    Yan, Zhenzhen
    [J]. M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2023, 25 (05) : 1779 - 1795
  • [2] Cooperative Data-Driven Distributionally Robust Optimization
    Cherukuri, Ashish
    Cortes, Jorge
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4400 - 4407
  • [3] A data-driven distributionally robust newsvendor model with a Wasserstein ambiguity set
    Lee, Sangyoon
    Kim, Hyunwoo
    Moon, Ilkyeong
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2021, 72 (08) : 1879 - 1897
  • [4] A New Data-Driven Distributionally Robust Portfolio Optimization Method Based on Wasserstein Ambiguity Set
    Du, Ningning
    Liu, Yankui
    Liu, Ying
    [J]. IEEE ACCESS, 2021, 9 : 3174 - 3194
  • [5] Data-driven Distributionally Robust Optimization for Edge Intelligence
    Zhang, Zhaofeng
    Lin, Sen
    Dedeoglu, Mehmet
    Ding, Kemi
    Zhang, Junshan
    [J]. IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 2619 - 2628
  • [6] Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems
    Delage, Erick
    Ye, Yinyu
    [J]. OPERATIONS RESEARCH, 2010, 58 (03) : 595 - 612
  • [7] Data-driven Wasserstein distributionally robust optimization for refinery planning under uncertainty
    Zhao, Jinmin
    Zhao, Liang
    He, Wangli
    [J]. IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [8] Data-driven crude oil scheduling optimization with a distributionally robust joint chance constraint under multiple uncertainties
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2023, 171
  • [9] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    [J]. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166
  • [10] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Xin Dai
    Liang Zhao
    Renchu He
    Wenli Du
    Weimin Zhong
    Zhi Li
    Feng Qian
    [J]. Chinese Journal of Chemical Engineering, 2024, (05) : 152 - 166