A Sub-1 V Capacitively Biased BJT-Based Temperature Sensor With an Inaccuracy of ±0.15 °C (3σ) From-55 °C to 125 °C

被引:2
|
作者
Tang, Zhong [1 ]
Pan, Sining [1 ,2 ,3 ]
Grubor, Milos [1 ,4 ]
Makinwa, Kofi A. A.
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci EEMCS, Microelect Dept, Elect Instrumentat Lab, NL-2628 CD Delft, Netherlands
[2] Vango Technol Inc, Hangzhou 310053, Peoples R China
[3] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
[4] Analog Devices Inc, Edinburgh EH12 5HD, Scotland
关键词
Delta Sigma ADC; capacitively biased bipolar junction transistor (BJT); inverter-based amplifier; temperature sensor; temperature to digital converter; TO-DIGITAL CONVERTER; BULK-DIODES; -55-DEGREES-C;
D O I
10.1109/JSSC.2023.3308554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a sub-1 V bipolar junction transistor (BJT)-based temperature sensor that achieves both high accuracy and high energy efficiency. To avoid the extra headroom required by conventional current sources, the sensor's diode-connected BJTs are biased by precharging sampling capacitors to the supply voltage and then discharging them through the BJTs. This capacitive biasing technique requires little headroom (similar to 150 mV), and simultaneously samples the BJTs' base-emitter voltages. The latter are then applied to a switched-capacitor (SC) Delta Sigma ADC to generate a digital representation of temperature. For robust sub-1 V operation and high energy efficiency, the ADC employs auto-zeroed inverter-based integrators. Fabricated in a standard 0.18-mu m CMOS process, the sensor occupies 0.25 mm(2) and consumes 810 nW from a 0.95-V supply at room temperature. It achieves an inaccuracy of +/- 0.15 degrees C (3 sigma) from -55 degrees C to 125 degrees C after a 1-point trim, which is at par with the state-of-the-art. It also achieves a resolution figure of merit (FoM) of 0.34 pJ center dot K-2, which is more than 6x lower than that of state-of-the-art BJT-based sensors with similar accuracy.
引用
收藏
页码:3433 / 3441
页数:9
相关论文
共 50 条
  • [1] A sub-1V BJT-based CMOS temperature sensor from-55 °C to 125 °C
    Wang, Bo
    Law, Man Kay
    Tang, Fang
    Bermak, Amine
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [2] A BJT-Based Temperature Sensor with a Packaging-Robust Inaccuracy of ±0.3°C (3σ) from-55°C to+125°C After Heater-Assisted Voltage Calibration
    Yousefzadeh, Bahman
    Makinwa, Kofi A. A.
    2017 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2017, : 162 - 162
  • [3] A BJT-Based Temperature-to-Digital Converter With ±60 mK (3σ) Inaccuracy From-55 °C to+125 °C in 0.16-μm CMOS
    Yousefzadeh, Bahman
    Shalmany, Saleh Heidary
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (04) : 1044 - 1052
  • [4] A 0.25 mm2-Resistor-Based Temperature Sensor With an Inaccuracy of 0.12 °C (3σ) From-55 °C to 125 °C
    Pan, Sining
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (12) : 3347 - 3355
  • [5] A CMOS Temperature Sensor With a Voltage-Calibrated Inaccuracy of ±0.15°C (3σ) From -55°C to 125°C
    Souri, Kamran
    Chae, Youngcheol
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (01) : 292 - 301
  • [6] A Curvature Compensated BJT-based Time-Domain Temperature Sensor With An Inaccuracy of +/-0.7°C From-40°C to 125°C
    Xu, Yukun
    Law, Man-Kay
    Mak, Pui-In
    Martins, Rui P.
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [7] A PNP-Based Temperature Sensor With Continuous-Time Readout and ±0.1 °C (3σ) Inaccuracy From-55 °C to 125 °C
    Toth, Nandor G.
    Tang, Zhong
    Someya, Teruki
    Pan, Sining
    Makinwa, Kofi A. A.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2024,
  • [8] A BJT-Based CMOS Temperature Sensor With Duty-Cycle-Modulated Output and ±0.5°C (3σ) Inaccuracy From-40 °C to 125 °C
    Huang, Zhenyan
    Tang, Zhong
    Yu, Xiao-Peng
    Shi, Zheng
    Lin, Ling
    Tan, Nick Nianxiong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 2780 - 2784
  • [9] An Energy-Efficient BJT-Based Temperature Sensor with ±0.8 °C (3σ) Inaccuracy from-50 to 150 °C
    Qin, Chuyun
    Huang, Zhenyan
    Liu, Yuyan
    Li, Jiping
    Lin, Ling
    Tan, Nianxiong
    Yu, Xiaopeng
    SENSORS, 2022, 22 (23)
  • [10] A NEW ARCHITECTURE TEMPERATURE SENSOR WITH 0.03°C RESOLUTION FROM-55°C TO 125°C
    Xu, Dongyuan
    Zhao, Meng
    Lu, Wengao
    Chu, Hai
    Zhang, Yacong
    Chen, Zhongjian
    2014 12TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2014,