Achieving stable all-solid-state lithium- metal batteries by tuning the cathode- electrolyte interface and ionic/electronic transport within the cathode

被引:56
|
作者
Fang, Ruyi [1 ,2 ]
Liu, Yijie [1 ,2 ]
Li, Yutao [1 ,2 ]
Manthiram, Arumugam [1 ,2 ]
Goodenough, John B. [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
All-solid-state batteries; High-nickel layered oxide; Lattice oxygen; Sulfide electrolyte; Electrochemistry; ARGYRODITE LI6PS5CL; ELECTROCHEMICAL REDOX; CONDUCTIVE ADDITIVES; SECONDARY BATTERIES; COMPOSITE; PERFORMANCE; STABILITY; EFFICIENT;
D O I
10.1016/j.mattod.2023.03.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
All-solid-state batteries with sulfide electrolytes and high-nickel layered oxide cathodes attract much interest due to their high specific energy. However, their cycling performance is primarily influenced by the interface between the sulfide electrolyte and the high-Ni layered oxide particles, which requires the use of composite cathodes with high ionic and electronic conductivities to achieve a kinetically stable interface inside the cathode. Here, we apply Ti2O3 particles to the high-Ni cathode LiNi0.8Co0.1- Mn0.1O2 (NCM811), where Ti2O3 not only acts as an electronic conductor to provide a fast diffusion path for electrons in the composite cathode, but also absorbs the lattice oxygen released from NCM811 cathode during cycling, stabilizing the Li6PS5Cl/NCM811 interface and suppressing electrolyte oxidation. The as-modified cathode exhibits an initial specific capacity of 192 mAh g-1and retains 166 mAh g-1 after 140 cycles at 0.1C rate with a good capacity retention of 86.5%. Furthermore, the composite cathode displays high rate capability even at 1C rate. By contrast, the unmodified Li6PS5Cl/ NCM811 cathode shows poor cycling performance with only 130 mAh g-1remaining after 130 cycles. This work provides a new direction for the design of cathodes for all-solid-state batteries that can deliver high specific energy with long cycle life.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 50 条
  • [1] Fundamentals of the Cathode-Electrolyte Interface in All-solid-state Lithium Batteries
    Jiang, Yidong
    Lai, Anjie
    Ma, Jun
    Yu, Kai
    Zeng, Huipeng
    Zhang, Guangzhao
    Huang, Wei
    Wang, Chaoyang
    Chi, Shang-Sen
    Wang, Jun
    Deng, Yonghong
    CHEMSUSCHEM, 2023, 16 (09)
  • [2] Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries
    Su, Shiming
    Ma, Jiabin
    Zhao, Liang
    Lin, Kui
    Li, Qidong
    Lv, Shasha
    Kang, Feiyu
    He, Yan-Bing
    CARBON ENERGY, 2021, 3 (06) : 866 - 894
  • [3] Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries
    Shiming Su
    Jiabin Ma
    Liang Zhao
    Kui Lin
    Qidong Li
    Shasha Lv
    Feiyu Kang
    YanBing He
    Carbon Energy, 2021, 3 (06) : 866 - 894
  • [4] Reducing Gases Triggered Cathode Surface Reconstruction for Stable Cathode-Electrolyte Interface in Practical All-Solid-State Lithium Batteries
    Zhang, Bingkai
    He, Zhiwei
    Liu, Tiefeng
    Li, Zeheng
    Zhang, Shaojian
    Zhao, Wenguang
    Yin, Zu-Wei
    Zhuo, Zengqing
    Zhang, Mingjian
    Pan, Feng
    Zhang, Shanqing
    Lin, Zhan
    Lu, Jun
    ADVANCED MATERIALS, 2024, 36 (06)
  • [5] π-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries
    Zheng, Surong
    Yu, Shiwei
    Ullah, Zaka
    Liu, Lei
    Chen, Ledi
    Sun, Houliang
    Chen, Mingliang
    Liu, Liwei
    Li, Qi
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (07) : 3967 - 3976
  • [6] Multiple Dynamic Bonds-Driven Integrated Cathode/Polymer Electrolyte for Stable All-Solid-State Lithium Metal Batteries
    Chen, Jing
    Deng, Xuetian
    Gao, Yiyang
    Zhao, Yuanjun
    Kong, Xiangpeng
    Rong, Qiang
    Xiong, Junqiao
    Yu, Demei
    Ding, Shujiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
  • [7] Engineering a High-Voltage Durable Cathode/Electrolyte Interface for All-Solid-State Lithium Metal Batteries via In Situ Electropolymerization
    Li, Qi
    Zhang, Xiaoyu
    Peng, Jian
    Wang, Zhihao
    Rao, Zhixiang
    Li, Yuyu
    Li, Zhen
    Fang, Chun
    Han, Jiantao
    Huang, Yunhui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 21018 - 21027
  • [8] Revealing stable organic cathode/solid electrolyte interface to promote all-solid-state sodium batteries using organic cathodes
    Yang, Shuaishuai
    Shao, Changxiang
    Xiao, Xiong
    Fang, Debao
    Li, Na
    Zhao, Enyue
    Wang, Chengzhi
    Chen, Lai
    Li, Ning
    Li, Jingbo
    Su, Yuefeng
    Jin, Haibo
    ENERGY STORAGE MATERIALS, 2024, 73
  • [9] A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries
    Bandyopadhyay, Sumana
    Nandan, Bhanu
    MATERIALS TODAY ENERGY, 2023, 31
  • [10] Chemo-electrochemical Evolution of Cathode-Solid Electrolyte Interface in All-Solid-State Batteries
    Kwon, Patrick J.
    Juarez-Yescas, Carlos
    Jeong, Hyewon
    Moradi, Saeed
    Gao, Elizabeth
    Lawrence, Debbie
    Zahiri, Beniamin
    Braun, Paul V.
    ACS ENERGY LETTERS, 2024, 9 (10): : 4746 - 4752