RFPose-OT: RF-based 3D human pose estimation via optimal transport theory

被引:2
|
作者
Yu, Cong [1 ]
Zhang, Dongheng [2 ]
Wu, Zhi [2 ]
Lu, Zhi [2 ]
Xie, Chunyang [1 ]
Hu, Yang [3 ]
Chen, Yan [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Sci & Technol China, Sch Cyber Sci & Technol, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Radio frequency sensing; Human pose estimation; Optimal transport; Deep learning; ARTIFICIAL-INTELLIGENCE; LOCALIZATION;
D O I
10.1631/FITEE.2200550
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel framework, i.e., RFPose-OT, to enable three-dimensional (3D) human pose estimation from radio frequency (RF) signals. Different from existing methods that predict human poses from RF signals at the signal level directly, we consider the structure difference between the RF signals and the human poses, propose a transformation of the RF signals to the pose domain at the feature level based on the optimal transport (OT) theory, and generate human poses from the transformed features. To evaluate RFPose-OT, we build a radio system and a multi-view camera system to acquire the RF signal data and the ground-truth human poses. The experimental results in a basic indoor environment, an occlusion indoor environment, and an outdoor environment demonstrate that RFPose-OT can predict 3D human poses with higher precision than state-of-the-art methods.
引用
收藏
页码:1445 / 1457
页数:13
相关论文
共 50 条
  • [1] RFPose-OT: RF-based 3D human pose estimation via optimal transport theoryRFPose-OT: 基于最优传输理论的无线三维人体姿态估计
    Cong Yu
    Dongheng Zhang
    Zhi Wu
    Zhi Lu
    Chunyang Xie
    Yang Hu
    Yan Chen
    [J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24 : 1445 - 1457
  • [2] MobiRFPose: Portable RF-Based 3D Human Pose Camera
    Yu, Cong
    Zhang, Dongheng
    Wu, Zhi
    Xie, Chunyang
    Lu, Zhi
    Hu, Yang
    Chen, Yan
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3715 - 3727
  • [3] RPM 2.0: RF-Based Pose Machines for Multi-Person 3D Pose Estimation
    Xie, Chunyang
    Zhang, Dongheng
    Wu, Zhi
    Yu, Cong
    Hu, Yang
    Chen, Yan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (01) : 490 - 503
  • [4] RF-based Multi-view Pose Machine for Multi-Person 3D Pose Estimation
    Xie, Chunyang
    Zhang, Dongheng
    Wu, Zhi
    Yu, Cong
    Hu, Yang
    Sun, Qibin
    Chen, Yan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2669 - 2674
  • [5] RF-Based 3D Skeletons
    Zhao, Mingmin
    Tian, Yonglong
    Zhao, Hang
    Abu Alsheikh, Mohammad
    Li, Tianhong
    Hristov, Rumen
    Kabelac, Zachary
    Katabi, Dina
    Torralba, Antonio
    [J]. PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, : 267 - 281
  • [6] RFPose-GAN: Data Augmentation for RFID based 3D Human Pose Tracking
    Yang, Chao
    Wang, Ziqi
    Mao, Shiwen
    [J]. 2022 IEEE 12TH INTERNATIONAL CONFERENCE ON RFID TECHNOLOGY AND APPLICATIONS (RFID-TA), 2022, : 138 - 141
  • [7] 3D Human Pose Estimation via Intuitive Physics
    Tripathi, Shashank
    Mueller, Lea
    Huang, Chun-Hao P.
    Taheri, Omid
    Black, Michael J.
    Tzionas, Dimitrios
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4713 - 4725
  • [8] Single image based 3D human pose estimation via uncertainty learning
    Han, Chuchu
    Yu, Xin
    Gao, Changxin
    Sang, Nong
    Yang, Yi
    [J]. PATTERN RECOGNITION, 2022, 132
  • [9] Improving 3D Human Pose Estimation via 3D Part Affinity Fields
    Liu, Ding
    Zhao, Zixu
    Wang, Xinchao
    Hu, Yuxiao
    Zhang, Lei
    Huang, Thomas S.
    [J]. 2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1004 - 1013
  • [10] 3D Human Pose Estimation based on Center of Gravity
    Xu, Liao
    Wu, Suping
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,