Piezoelectric fibers-based PVDF-ZnS-carbon nano onions as a flexible nanogenerator for energy harvesting and self-powered pressure sensing

被引:16
|
作者
Khazani, Y. [1 ]
Rafiee, E. [1 ,2 ]
Samadi, A. [3 ]
机构
[1] Razi Univ, Inst Nanosci & Nanotechnol, Kermanshah, Iran
[2] Razi Univ, Fac Chem, Kermanshah 6714414971, Iran
[3] Urmia Univ, Fac Engn, Dept Polymer Engn, Orumiyeh, Iran
基金
美国国家科学基金会;
关键词
Piezoelectric nanogenerator; Carbon nano onions; Nano-fibrous composite; Self-powered devices; HIGH-PERFORMANCE; NANOFIBERS;
D O I
10.1016/j.colsurfa.2023.132004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, an innovative piezoelectric nanogenerator (PENG) is fabricated by electrospun polyvinylidene fluoride (PVDF) and a hybrid nanofiller comprised of zinc sulfide nanorods (ZnS NRs) and carbon nano onion particles (CNOs). From a mechanistic point of view, it has been determined that ZnS nanorods contribute to the alignment of the electric dipoles in PVDF and enhance the overall piezoelectric properties of the composite nanofibers because of their intrinsic piezoelectric ability. CNOs as a family of carbon allotropes with electrical conductivity as well as easy preparation method from natural source of castor oil as a cost-effective preparation method can improve the piezoelectric performance of PVDF nanofibers by positively enhancing the charge transfer rate and thereby enabling the alignment of PVDF's electric dipoles. The developed PVDF-ZnS-CNOs composite (with 0.15 wt% of CNOs loading) based PENG exhibited improved electrical functionality and stability. The maximum power density of approximately 30.15 & mu;W/cm2, the load resistance of 1.0 M & omega;, the open-circuit voltage of 14 V, and the short-circuit current of 35 & mu;A were observed. In addition to evaluate the energy harvesting and sensing capabilities, the constructed PENG was utilized to identify numerous types of human movements, and several capacitors were charged. It was observed that a capacitor with a 1 & mu;F capacity could be charged to 9.5 V under mechanical stimulation in 45 s, which shows a promising platform for eliminating the need for an external power
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Flexible, Lightweight, and Wearable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Wu, Fan
    Li, Congju
    Yin, Yingying
    Cao, Ran
    Li, Hui
    Zhang, Xiuling
    Zhao, Shuyu
    Wang, Jiaona
    Wang, Bin
    Xing, Yi
    Du, Xinyu
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (01):
  • [2] Revisiting δ-PVDF based piezoelectric nanogenerator for self-powered pressure mapping sensor
    Gupta, Varun
    Babu, Anand
    Ghosh, Sujoy Kumar
    Mallick, Zinnia
    Mishra, Hari Krishna
    Saini, Dalip
    Mandal, Dipankar
    APPLIED PHYSICS LETTERS, 2021, 119 (25)
  • [3] High β-crystallinity comprising nitrogenous carbon dot/PVDF nanocomposite decorated self-powered and flexible piezoelectric nanogenerator for harvesting human movement mediated energy and sensing weights
    Sarkar, Debmalya
    Das, Namrata
    Saikh, Minarul
    Biswas, Prosenjit
    Roy, Shubham
    Paul, Sumana
    Hoque, Nur Amin
    Basu, Ruma
    Das, Sukhen
    CERAMICS INTERNATIONAL, 2023, 49 (03) : 5466 - 5478
  • [4] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    Chen, Gantong
    Zhu, Yue
    Huang, Dongmei
    Zhou, Shengxi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (06) : 1631 - 1667
  • [5] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    CHEN GanTong
    ZHU Yue
    HUANG DongMei
    ZHOU ShengXi
    Science China(Technological Sciences), 2024, 67 (06) : 1631 - 1667
  • [6] Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application
    Rahman, Wahida
    Garain, Samiran
    Sultana, Ayesha
    Middya, Tapas Ranjan
    Mandal, Dipankar
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (03) : 9826 - 9830
  • [7] Nano-Engineered Carbon Fibre-Based Piezoelectric Smart Composites for Energy Harvesting and Self-Powered Sensing
    He, Qinrong
    Li, Xuan
    Zhang, Han
    Briscoe, Joe
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (20)
  • [8] A Flexible Triboelectric Nanogenerator for Bio-Mechanical Energy Harvesting and Basketball Self-Powered Sensing
    Xu, Dasheng
    NANO, 2023, 18 (10)
  • [9] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [10] Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
    Li, Xunjia
    Jiang, Chengmei
    Zhao, Fengnian
    Lan, Lingyi
    Yao, Yao
    Yu, Yonghua
    Ping, Jianfeng
    Ying, Yibin
    NANO ENERGY, 2019, 61 : 78 - 85