A role for heritable transcriptomic variation in maize adaptation to temperate environments

被引:10
|
作者
Sun, Guangchao [1 ,2 ,3 ]
Yu, Huihui [2 ,4 ]
Wang, Peng [3 ]
Lopez-Guerrero, Martha [5 ]
Mural, Ravi V. [1 ,2 ,3 ]
Mizero, Olivier N. [1 ,2 ,3 ]
Grzybowski, Marcin [1 ,2 ,3 ]
Song, Baoxing [6 ]
van Dijk, Karin [5 ]
Schachtman, Daniel P. [2 ,3 ]
Zhang, Chi [2 ,4 ]
Schnable, James C. [1 ,2 ,3 ]
机构
[1] Univ Nebraska, Quantitat Life Sci Initiat, Lincoln, NE 68588 USA
[2] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA
[3] Univ Nebraska, Dept Agron & Hort, Lincoln, NE 68588 USA
[4] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA
[5] Univ Nebraska, Dept Biochem, Lincoln, NE USA
[6] Cornell Univ, Inst Genom Divers, Ithaca, NY USA
基金
美国国家科学基金会;
关键词
Expression quantitative loci; Maize transcriptional regulatory network; Temperate adaptation; GENETIC ARCHITECTURE; EQTL ANALYSIS; EXPRESSION; REVEALS; POPULATION; PROTEIN; GENOME; DOMESTICATION; ASSOCIATION; LOCUS;
D O I
10.1186/s13059-023-02891-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundTranscription bridges genetic information and phenotypes. Here, we evaluated how changes in transcriptional regulation enable maize (Zea mays), a crop originally domesticated in the tropics, to adapt to temperate environments.ResultWe generated 572 unique RNA-seq datasets from the roots of 340 maize genotypes. Genes involved in core processes such as cell division, chromosome organization and cytoskeleton organization showed lower heritability of gene expression, while genes involved in anti-oxidation activity exhibited higher expression heritability. An expression genome-wide association study (eGWAS) identified 19,602 expression quantitative trait loci (eQTLs) associated with the expression of 11,444 genes. A GWAS for alternative splicing identified 49,897 splicing QTLs (sQTLs) for 7614 genes. Genes harboring both cis-eQTLs and cis-sQTLs in linkage disequilibrium were disproportionately likely to encode transcription factors or were annotated as responding to one or more stresses. Independent component analysis of gene expression data identified loci regulating co-expression modules involved in oxidation reduction, response to water deprivation, plastid biogenesis, protein biogenesis, and plant-pathogen interaction. Several genes involved in cell proliferation, flower development, DNA replication, and gene silencing showed lower gene expression variation explained by genetic factors between temperate and tropical maize lines. A GWAS of 27 previously published phenotypes identified several candidate genes overlapping with genomic intervals showing signatures of selection during adaptation to temperate environments.ConclusionOur results illustrate how maize transcriptional regulatory networks enable changes in transcriptional regulation to adapt to temperate regions.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] A role for heritable transcriptomic variation in maize adaptation to temperate environments
    Guangchao Sun
    Huihui Yu
    Peng Wang
    Martha Lopez-Guerrero
    Ravi V. Mural
    Olivier N. Mizero
    Marcin Grzybowski
    Baoxing Song
    Karin van Dijk
    Daniel P. Schachtman
    Chi Zhang
    James C. Schnable
    Genome Biology, 24
  • [2] Adaptation of tropical maize germplasm to temperate environments
    Hallauer, A. R.
    Carena, M. J.
    EUPHYTICA, 2014, 196 (01) : 1 - 11
  • [3] Adaptation of tropical maize germplasm to temperate environments
    A. R. Hallauer
    M. J. Carena
    Euphytica, 2014, 196 : 1 - 11
  • [4] Enhancing adaptation of tropical maize to temperate environments using genomic selection
    Choquette, Nicole E.
    Weldekidan, Teclemariam
    Brewer, Jason
    Davis, Scott B.
    Wisser, Randall J.
    Holland, James B.
    G3-GENES GENOMES GENETICS, 2023,
  • [5] Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding
    Liu, Haijun
    Wang, Xiaqing
    Warburton, Marilyn L.
    Wen, Weiwei
    Jin, Minliang
    Deng, Min
    Liu, Jie
    Tong, Hao
    Pan, Qingchun
    Yang, Xiaohong
    Yan, Jianbing
    MOLECULAR PLANT, 2015, 8 (06) : 871 - 884
  • [6] RUNAWAY COEVOLUTION: ADAPTATION TO HERITABLE AND NONHERITABLE ENVIRONMENTS
    Drown, Devin M.
    Wade, Michael J.
    EVOLUTION, 2014, 68 (10) : 3039 - 3046
  • [7] Heritable Epigenetic Variation among Maize Inbreds
    Eichten, Steve R.
    Swanson-Wagner, Ruth A.
    Schnable, James C.
    Waters, Amanda J.
    Hermanson, Peter J.
    Liu, Sanzhen
    Yeh, Cheng-Ting
    Jia, Yi
    Gendler, Karla
    Freeling, Michael
    Schnable, Patrick S.
    Vaughn, Matthew W.
    Springer, Nathan M.
    PLOS GENETICS, 2011, 7 (11)
  • [8] Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids
    He, Guangming
    Chen, Beibei
    Wang, Xuncheng
    Li, Xueyong
    Li, Jigang
    He, Hang
    Yang, Mei
    Lu, Lu
    Qi, Yijun
    Wang, Xiping
    Deng, Xing Wang
    GENOME BIOLOGY, 2013, 14 (06):
  • [9] Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids
    Guangming He
    Beibei Chen
    Xuncheng Wang
    Xueyong Li
    Jigang Li
    Hang He
    Mei Yang
    Lu Lu
    Yijun Qi
    Xiping Wang
    Xing Wang Deng
    Genome Biology, 14
  • [10] INTER-PLANT VARIATION IN TEMPERATE CROPS OF MAIZE
    BREEZE, VG
    MILBOURN, GM
    ANNALS OF APPLIED BIOLOGY, 1981, 99 (03) : 335 - 352