De Novo Genome Assembly of the Sea Star Patiria pectinifera (Muller & Troschel, 1842) Using Oxford Nanopore Technology and Illumina Platforms

被引:0
|
作者
Rhee, Jae-Sung [1 ,2 ,3 ]
Nam, Sang-Eun [1 ]
Lee, Seung Jae [4 ]
Park, Hyun [4 ]
机构
[1] Incheon Natl Univ, Coll Nat Sci, Dept Marine Sci, Incheon 22012, South Korea
[2] Incheon Natl Univ, Res Inst Basic Sci, Incheon 22012, South Korea
[3] Yellow Sea Res Inst, Incheon 22012, South Korea
[4] Korea Univ, Coll Life Sci & Biotechnol, Div Biotechnol, Seoul 02841, South Korea
来源
DIVERSITY-BASEL | 2024年 / 16卷 / 02期
基金
新加坡国家研究基金会;
关键词
Asteroidea; sea star genome; starfish; Patiria pectinifera; de novo genome assembly; TRANSPOSABLE ELEMENTS; GENE-EXPRESSION; EVOLUTION; IDENTIFICATION; ANNOTATION; FAMILIES;
D O I
10.3390/d16020091
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The sea star Patiria pectinifera (Asteroidea; Asterinidae; homotypic synonym: Asterina pectinifera; Muller & Troschel, 1842) is widely distributed in the coastal regions of the Seas of East Asia and the northern Pacific Ocean. Here, a de novo genome sequence of P. pectinifera as a reference for fundamental and applied research was constructed by employing a combination of long-read Oxford Nanopore Technology (ONT) PromethION, short-read Illumina platforms, and 10 x Genomics. The draft genome of P. pectinifera, containing 13,848,344 and 156,878,348 contigs from ONT and Illumina platforms, respectively, was obtained. Assembly with CANU resulted in 2262 contigs with an N50 length of 367 kb. Finally, ARCS + LINKS assembly combined these contigs into 328 scaffolds, totaling 499 Mb with an N50 length of 2 Mbp. The estimated genome size by GenomeScope analysis was 461 Mb. BUSCO analysis indicated that 930 (97.5%) of the expected genes were found in the assembly, with 889 (93.2%) being single-copy and 41 (4.3%) duplicated after searching against the metazoan database. Annotation, utilizing sequences obtained from Illumina RNA-Seq and Pacific Biosciences Iso-Seq, led to the identification of 22,367 protein-coding genes. When examining the orthologous relationship of P. pectinifera against the scaffolds of the common sea star Patiria miniata, high contiguity was observed. Annotation of repeat elements highlighted an enrichment of 1,121,079 transposable elements, constituting 47% of the genome, suggesting their potential role in shaping the genome structure of P. pectinifera. This de novo genome assembly is expected to be a valuable resource for future studies, providing insight into the developmental, environmental, and ecological aspects of P. pectinifera biology.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing
    Dhar, Ruby
    Seethy, Ashikh
    Pethusamy, Karthikeyan
    Singh, Sunil
    Rohil, Vishwajeet
    Purkayastha, Kakali
    Mukherjee, Indrani
    Goswami, Sandeep
    Singh, Rakesh
    Raj, Ankita
    Srivastava, Tryambak
    Acharya, Sovon
    Rajashekhar, Balaji
    Karmakar, Subhradip
    GIGASCIENCE, 2019, 8 (05):
  • [2] Genome Sequencing of Fiber Flax Cultivar Atlant Using Oxford Nanopore and Illumina Platforms
    Dmitriev, Alexey A.
    Pushkova, Elena N.
    Novakovskiy, Roman O.
    Beniaminov, Artemy D.
    Rozhmina, Tatiana A.
    Zhuchenko, Alexander A.
    Bolsheva, Nadezhda L.
    Muravenko, Olga V.
    Povkhova, Liubov V.
    Dvorianinova, Ekaterina M.
    Kezimana, Parfait
    Snezhkina, Anastasiya V.
    Kudryavtseva, Anna V.
    Krasnov, George S.
    Melnikova, Nataliya V.
    FRONTIERS IN GENETICS, 2021, 11
  • [3] Nonlinear analysis of the morphology of hemocytes from the sea stars Aphelasterias japonica (Bell, 1881), Patiria pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864)
    Karetin, Yu. A.
    RUSSIAN JOURNAL OF MARINE BIOLOGY, 2016, 42 (04) : 315 - 323
  • [4] Nonlinear analysis of the morphology of hemocytes from the sea stars Aphelasterias japonica (Bell, 1881), Patiria pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864)
    Yu. A. Karetin
    Russian Journal of Marine Biology, 2016, 42 : 315 - 323
  • [5] Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome
    Goodwin, Sara
    Gurtowski, James
    Ethe-Sayers, Scott
    Deshpande, Panchajanya
    Schatz, Michael C.
    McCombie, W. Richard
    GENOME RESEARCH, 2015, 25 (11) : 1750 - 1756
  • [6] De Novo Genome Assembly of Stinkhorn Mushroom Clathrus columnatus (Basidiomycota, Fungi) Using Illumina and Nanopore Sequencing Data
    Ogiso-Tanaka, Eri
    Itagaki, Hiyori
    Ohmae, Muneyuki
    Hosoya, Tsuyoshi
    Hosaka, Kentaro
    MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 2022, 11 (02):
  • [7] De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology
    Ma, Ligang
    Dong, Chengming
    Song, Chi
    Wang, Xiaolan
    Zheng, Xiaoke
    Niu, Yan
    Chen, Shilin
    Feng, Weisheng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3954 - 3963
  • [8] De novo genome assembly of a Han Chinese male and genome-wide detection of structural variants using Oxford Nanopore sequencing
    Cai, Ruikun
    Dong, Yichao
    Fang, Mingxia
    Guo, Changlong
    Ma, Xu
    MOLECULAR GENETICS AND GENOMICS, 2020, 295 (04) : 871 - 876
  • [9] De novo genome assembly of a Han Chinese male and genome-wide detection of structural variants using Oxford Nanopore sequencing
    Ruikun Cai
    Yichao Dong
    Mingxia Fang
    Changlong Guo
    Xu Ma
    Molecular Genetics and Genomics, 2020, 295 : 871 - 876
  • [10] Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish
    Johnson, Lisa K.
    Sahasrabudhe, Ruta
    Gill, James Anthony
    Roach, Jennifer L.
    Froenicke, Lutz
    Brown, C. Titus
    Whitehead, Andrew
    GIGASCIENCE, 2020, 9 (06):