Adjusting the Operational Potential Window as a Tool for Prolonging the Durability of Carbon-Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts

被引:3
|
作者
Dukic, Tina [2 ]
Moriau, Leonard Jean [1 ]
Klofutar, Iva [1 ]
Sala, Martin [3 ]
Pavko, Luka [4 ]
Lopez, Francisco Javier Gonzalez [4 ]
Ruiz-Zepeda, Francisco [1 ]
Pavlisic, Andraz [5 ]
Hotko, Miha [1 ,6 ]
Gatalo, Matija [1 ,4 ]
Hodnik, Nejc [1 ,6 ]
机构
[1] Natl Inst Chem, Dept Mat Chem, Ljubljana 1001, Slovenia
[2] Univ Ljubljana, Fac Chem & Chem Technol, Ljubljana 1000, Slovenia
[3] Natl Inst Chem, Dept Analyt Chem, Ljubljana 1001, Slovenia
[4] ReCatalyst Doo, Ljubljana 1001, Slovenia
[5] Natl Inst Chem, Dept Catalysis & Chem React Engn, Ljubljana 1001, Slovenia
[6] Univ Nova Gorica, Nova Gorica 5000, Slovenia
基金
欧洲研究理事会;
关键词
fuel cells; oxygen reduction reaction; platinumalloys; durability; accelerated degradation tests; potential window; hold time; PLATINUM DISSOLUTION; ELECTRON-MICROSCOPY; METAL DISSOLUTION; MODEL EXPERIMENTS; DEGRADATION; CATALYSTS; PERFORMANCE; CHALLENGES; STABILITY; STRATEGIES;
D O I
10.1021/acscatal.3c06251
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 degrees C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 V-RHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 V-RHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 V-RHE rather than 0.6-0.95 V-RHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.
引用
收藏
页码:4303 / 4317
页数:15
相关论文
共 50 条
  • [1] Understanding the Crucial Significance of the Temperature and Potential Window on the Stability of Carbon Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts
    Dukic, Tina
    Moriau, Leonard Jean
    Pavko, Luka
    Kostelec, Mitja
    Prokop, Martin
    Ruiz-Zepeda, Francisco
    Sala, Martin
    Drazic, Goran
    Gatalo, Matija
    Hodnik, Nejc
    ACS CATALYSIS, 2022, 12 (01) : 101 - 115
  • [2] Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts
    Pylypenko, Svitlana
    Borisevich, Albina
    More, Karren L.
    Corpuz, April R.
    Holme, Timothy
    Dameron, Arrelaine A.
    Olson, Tim S.
    Dinh, Huyen N.
    Gennett, Thomas
    O'Hayre, Ryan
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (10) : 2957 - 2964
  • [3] Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction
    Huang, Qinghong
    Yang, Hui
    Tang, Yawen
    Lu, Tianhong
    Akins, Daniel L.
    ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (08) : 1220 - 1224
  • [4] Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Pt-Ni Alloy Nanoparticles
    Jeon, Tae-Yeol
    Yoo, Sung Jong
    Cho, Yong-Hun
    Lee, Kug-Seung
    Kang, Soon Hyung
    Sung, Yung-Eun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45): : 19732 - 19739
  • [5] Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction
    Bing, Yonghong
    Liu, Hansan
    Zhang, Lei
    Ghosh, Dave
    Zhang, Jiujun
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) : 2184 - 2202
  • [6] Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction
    Wang, Wenming
    Zheng, Dan
    Du, Chong
    Zou, Zhiqing
    Zhang, Xigui
    Xia, Baojia
    Yang, Hui
    Akins, Daniel L.
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 243 - 249
  • [7] Microwave-assisted synthesis of carbon-supported Pt nanoparticles for their use as electrocatalysts in the oxygen reduction reaction and hydrogen evolution reaction
    Jaimes-Paez, C. D.
    Vences-Alvarez, E.
    Salinas-Torres, D.
    Morallon, E.
    Rangel-Mendez, J. R.
    Cazorla-Amoros, D.
    ELECTROCHIMICA ACTA, 2023, 464
  • [8] Kinetic effect of the ionomer on the oxygen reduction in carbon-supported Pt electrocatalysts
    Velazquez-Palenzuela, Amado
    Centellas, Francesc
    Brillas, Enric
    Arias, Conchita
    Maria Rodriguez, Rosa
    Antonio Garrido, Jose
    Cabot, Pere-Lluis
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (23) : 17828 - 17836
  • [9] High Performance Carbon-Supported Core @ Shell PdSn @ Pt Electrocatalysts for Oxygen Reduction Reaction
    Zhang, W.
    Wang, R.
    Wang, H.
    Lei, Z.
    FUEL CELLS, 2010, 10 (04) : 734 - 739
  • [10] Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles
    Yang, H
    Coutanceau, C
    Léger, JM
    Alonso-Vante, N
    Lamy, C
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 576 (02) : 305 - 313