Anodes for Li-ion batteries based on titanium fluorides

被引:0
|
作者
Astrova, Ekaterina V. [1 ]
Parfeneva, Alesya V. [1 ,2 ]
Li, Galina V. [1 ]
Ulin, Vladimir P. [1 ]
Yagovkina, Maria A. [1 ]
Nashchekin, Alexey V. [1 ]
Beregulin, Eugene V. [1 ]
Rumyantsev, Aleksander M. [1 ]
机构
[1] Russian Acad Sci, Ioffe Inst, St Petersburg, Russia
[2] Russian Acad Sci, Ioffe Inst, Politekhn Skaya 26, St Petersburg 194021, Russia
关键词
coulomb efficiency; GITT; Li-ion batteries; negative electrodes; superreversibility; titanium oxyfluoride; titanium trifluoride; METAL FLUORIDES; LITHIUM; IMPEDANCE; STORAGE;
D O I
10.1002/est2.594
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The work is devoted to a comparative study of the electrochemical behavior and molecular level transformations in TiF3 and TiOF2 electrodes of Li-ion batteries at charge-discharge processes. Based on analysis of the electrode voltage profiles, we propose possible redox reactions which occur with the change of Ti oxidizing state. According to these models, titanium trifluoride has a reversible capacity of 600 mAh/g, TiOF2 of 395 mAh/g. It has been shown that titanium oxyfluoride is characterized by a long cycle life while specific capacity of the titanium trifluoride rapidly degrades. The degradation of TiF3 is associated with a temporal molecular ordering and decrease in the chemical activity of titanium and lithium fluoride formed during the reversible introduction of lithium. The related effect lies under the superreversibility phenomenon in TiOF2 electrodes (Coulomb efficiency more than 100%). The dependences of the equilibrium voltage and chemical diffusion coefficient of Li on the concentration of Li were determined from GITT analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Novel Titanium Dioxide Based Nanocomposite Anodes for Li-Ion Batteries
    Guler, M. Oguz
    Cevher, O.
    Tocoglu, U.
    Cetinkaya, T.
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2013, 123 (02) : 390 - 392
  • [2] Iron-based cathodes/anodes for Li-ion and post Li-ion batteries
    Okada, S
    Yamaki, J
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1104 - 1113
  • [3] New nanostructured silicon and titanium nitride composite anodes for Li-ion batteries
    Kim, IS
    Kumta, PN
    Blomgren, GE
    MATERIALS FOR ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2002, 127 : 249 - 258
  • [4] Cracking in Si-based anodes for Li-ion batteries
    Aifantis, KE
    Dempsey, JP
    Hackney, SA
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2005, 10 (05) : 403 - 408
  • [5] Nanocomposite anodes for use in Li-ion batteries
    Yushin, Gleb
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [6] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand M.
    Grugeon S.
    Vezin H.
    Laruelle S.
    Ribière P.
    Poizot P.
    Tarascon J.-M.
    Nature Materials, 2009, 8 (2) : 120 - 125
  • [7] The dimensionality of Sn anodes in Li-ion batteries
    Wang, Bin
    Luo, Bin
    Li, Xianglong
    Zhi, Linjie
    MATERIALS TODAY, 2012, 15 (12) : 544 - 552
  • [8] Conjugated dicarboxylate anodes for Li-ion batteries
    Armand, M.
    Grugeon, S.
    Vezin, H.
    Laruelle, S.
    Ribiere, P.
    Poizot, P.
    Tarascon, J. -M.
    NATURE MATERIALS, 2009, 8 (02) : 120 - 125
  • [9] Metal oxide anodes for Li-ion batteries
    T. Brousse
    D. Defives
    L. Pasquereau
    S. M. Lee
    U. Herterich
    D. M. Schleich
    Ionics, 1997, 3 : 332 - 337
  • [10] Metal Oxide Anodes for Li-ion Batteries
    Brousse, T.
    Defives, D.
    Pasquereau, L.
    Lee, S. M.
    Herterich, U.
    Schleich, D. M.
    IONICS, 1997, 3 (5-6) : 332 - 337