An information fractal dimensional relative entropy

被引:1
|
作者
Wu, Jingyou [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fac Math Sci & Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational complexity - Probability distributions;
D O I
10.1063/5.0189038
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Shannon entropy is used to measure information uncertainty, while the information dimension is used to measure information complexity. Given two probability distributions, the difference can be measured by relative entropy. However, the existing relative entropy does not consider the effect of information dimension. To improve the existing entropy, a new relative entropy is presented in this paper. The information fractal dimension is considered in the proposed relative entropy. The new relative entropy is more generalized than the initial relative entropy. When dimension is not considered, it will degenerate to the initial relative entropy. Another interesting point is that the new relative entropy may have negative values when calculating. The physical meaning is still under exploration. Finally, some application examples are provided to exemplify the utilization of the proposed relative entropy. (c) 2024 Author(s).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Duan, Zhoubo
    Niu, Lifang
    Wang, Yangyang
    Liu, Liang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 1929 - 1936
  • [2] Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems
    Zhoubo Duan
    Lifang Niu
    Yangyang Wang
    Liang Liu
    International Journal of Theoretical Physics, 2017, 56 : 1929 - 1936
  • [3] Relative information entropy of an inhomogeneous universe
    Morita, Masaaki
    Buchert, Thomas
    Hosoya, Akio
    LiO, Nan
    INVISIBLE UNIVERSE INTERNATIONAL CONFERENCE, 2010, 1241 : 1074 - 1082
  • [4] Information, relative entropy of entanglement, and irreversibility
    Henderson, L
    Vedral, V
    PHYSICAL REVIEW LETTERS, 2000, 84 (10) : 2263 - 2266
  • [5] Information, relative entropy of entanglement, and irreversibility
    1600, American Inst of Physics, Woodbury, NY, USA (84):
  • [6] Relative entropy as a measure of diagnostic information
    Benish, WA
    MEDICAL DECISION MAKING, 1999, 19 (02) : 202 - 206
  • [7] Information Transfer With Respect to Relative Entropy in Multi-Dimensional Complex Dynamical Systems
    Yin, Yimin
    Zhang, Jing
    Duan, Xiaojun
    IEEE ACCESS, 2020, 8 : 39464 - 39478
  • [8] Relative information entropy in cosmology: The problem of information entanglement
    Czinner, Viktor G.
    Mena, Filipe C.
    PHYSICS LETTERS B, 2016, 758 : 9 - 13
  • [9] Dimensional behaviour of entropy and information
    Bobkov, Sergey
    Madiman, Mokshay
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (3-4) : 201 - 204
  • [10] Mutual, information, metric entropy and cumulative relative entropy risk
    Haussler, D
    Opper, M
    ANNALS OF STATISTICS, 1997, 25 (06): : 2451 - 2492