Universal Sampling Lower Bounds for Quantum Error Mitigation

被引:11
|
作者
Takagi, Ryuji [1 ,2 ]
Tajima, Hiroyasu [3 ,4 ]
Gu, Mile [2 ,5 ,6 ]
机构
[1] Univ Tokyo, Dept Basic Sci, Tokyo 1538902, Japan
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Nanyang Quantum Hub, Singapore 637371, Singapore
[3] Univ Electrocommun, Dept Commun Engn & Informat, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[4] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[5] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[6] CNRS UNS NUS NTU Int Joint Res Unit UMI 3654, MajuLab, Singapore, Singapore
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1103/PhysRevLett.131.210602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerous quantum error-mitigation protocols have been proposed, motivated by the critical need to suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial to characterize the fundamental sampling cost-how many times an arbitrary mitigation protocol must run a noisy quantum device. Here, we establish universal lower bounds on the sampling cost for quantum error mitigation to achieve the desired accuracy with high probability. Our bounds apply to general mitigation protocols, including the ones involving nonlinear postprocessing and those yet to be discovered. The results imply that the sampling cost required for a wide class of protocols to mitigate errors must grow exponentially with the circuit depth for various noise models, revealing the fundamental obstacles in the scalability of useful noisy near-term quantum devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Universal lower bounds for quantum diffusion
    Barbaroux, JM
    Tcheremchantsev, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (02) : 327 - 354
  • [2] Universal truncation error upper bounds in sampling restoration
    Olenko, Andriy Ya.
    Pogany, Tibor K.
    GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (04) : 765 - 786
  • [3] Universal Lower Bounds on Sampling Rates for Covariance Estimation
    Cohen, Deborah
    Eldar, Yonina C.
    Leus, Geert
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3272 - 3276
  • [4] Quantum computation with universal error mitigation on a superconducting quantum processor
    Song, Chao
    Cui, Jing
    Wang, H.
    Hao, J.
    Feng, H.
    Li, Ying
    SCIENCE ADVANCES, 2019, 5 (09):
  • [5] Exponentially tighter bounds on limitations of quantum error mitigation
    Quek, Yihui
    Franca, Daniel Stilck
    Khatri, Sumeet
    Meyer, Johannes Jakob
    Eisert, Jens
    NATURE PHYSICS, 2024, 20 (10) : 1648 - 1658
  • [6] Universal truncation error upper bounds in irregular sampling restoration
    Olenko, Andriy Ya.
    Pogany, Tibor K.
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 595 - 608
  • [7] Universal quadratic lower bounds on source coding error exponents
    Chang, Cheng
    Sahai, Anant
    2007 41ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1 AND 2, 2007, : 714 - 719
  • [8] Small Sampling Overhead Error Mitigation for Quantum Circuits
    Hsieh, Cheng-Yun
    Tsai, Hsin-Ying
    Lu, Yuan-Hsiang
    Li, James Chien-Mo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (03) : 826 - 839
  • [9] Universal Cost Bound of Quantum Error Mitigation Based on Quantum Estimation Theory
    Tsubouchi, Kento
    Sagawa, Takahiro
    Yoshioka, Nobuyuki
    PHYSICAL REVIEW LETTERS, 2023, 131 (21)
  • [10] Calculable lower bounds on the efficiency of universal sets of quantum gates
    Slowik, Oskar
    Sawicki, Adam
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (11)