A note on Ozaki's condition

被引:0
|
作者
Nunokawa, Mamoru [1 ]
Sokol, Janusz [2 ]
机构
[1] Univ Gunma, Hoshikuki-Cho 798-8,Chuou Ward, Chiba 2600808, Japan
[2] Univ Rzeszow, Coll Nat Sci, Ul Prof Pigon 1, PL-35310 Rzeszow, Poland
关键词
Analytic functions; Univalent; Multivalent;
D O I
10.1016/j.jmaa.2023.127860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider another proof of the Ozaki's condition for multivalent functions that if f (z) is analytic in a convex domain D and for some real value alpha we have Re{e(i alpha)f((p))(z)} > 0 in D, then f (z) is at most p-valent in D. Ozaki's condition is a generalization of the well-known Noshiro-Warschawski univalence condition. (c) 2023 Published by Elsevier Inc.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On an extension of Ozaki's condition
    Nunokawa, Mamoru
    Sokol, Janusz
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 291 - 295
  • [2] An improvement of Ozaki's condition
    Nunokawa, Mamoru
    Sokol, Janusz
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (22) : 10768 - 10776
  • [3] On Ozaki's condition for p-valency
    Nunokawa, Mamoru
    Sokol, Janusz
    Thomas, Derek K.
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (04) : 382 - 386
  • [4] OZAKI'S INEQUALITY AND UMEZAWA'S CONDITION FOR MULTIVALENT FUNCTIONS
    Nunokawa, Mamoru
    Sokol, Janusz
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 597 - 604
  • [5] On multivalent starlike functions and Ozaki condition
    Nunokawa, Mamoru
    Sokol, Janusz
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (01) : 78 - 92
  • [6] A Note on a Generalisation of Ore’s Condition
    Evelyne Flandrin
    Hao Li
    Antoni Marczyk
    Mariusz Woźniak
    Graphs and Combinatorics, 2005, 21 : 213 - 216
  • [7] A note on a generalisation of Ore's condition
    Flandrin, E
    Li, H
    Marczyk, A
    Wozniak, M
    GRAPHS AND COMBINATORICS, 2005, 21 (02) : 213 - 216
  • [8] Monks's Medical Condition: A Note
    Cambridge, Nick
    DICKENSIAN, 2014, 110 (492): : 45 - 47
  • [9] A note on Matsushima's regularity condition
    Chung, KS
    JOURNAL OF ECONOMIC THEORY, 1999, 87 (02) : 429 - 433
  • [10] A note on the exchangeability condition in Stein's method
    Roellin, Adrian
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1800 - 1806