Molecular Dynamics Simulation and Experimental Study of Mechanical Properties of Graphene-Cement Composites

被引:0
|
作者
Li, Henggan [1 ,2 ]
Lan, Fupeng [3 ]
Wang, Yulin [1 ,2 ]
Lin, Xiaotian [1 ,2 ]
Zhao, Yan [1 ,2 ]
Zhen, Qi [1 ,2 ]
Chen, Dehong [1 ,2 ]
Speranza, Giorgio
机构
[1] Wuyi Univ, Dept Civil Engn & Architecture, Nanping 354300, Peoples R China
[2] Fujian Prov Higher Educ Inst, Engn Res Ctr Prevent & Control Geol Disasters Nort, Nanping 354300, Peoples R China
[3] Nanping Wuyi Dev Grp Co Ltd, Dept Engn, Nanping 353000, Peoples R China
关键词
molecular simulation; calcium silicate hydrate; graphene; mechanical properties; CALCIUM-SILICATE-HYDRATE; CRYSTAL-STRUCTURE; OXIDE; MICROSTRUCTURE; TOBERMORITE; PERFORMANCE;
D O I
10.3390/ma17020410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To investigate the mechanical properties of graphene (G) and calcium silicate hydrate (C-S-H) composites in different directions, molecular dynamics (MD) simulations and experiments were used, and the effects of temperature, loading rate, and graphene defects were also investigated. The experimental results show that the addition of graphene can improve the flexural, compressive, and tensile strength of the composite. The results of molecular dynamics simulation show that the addition of graphene in x and z directions can enhance the tensile strength of G/C-S-H in three directions, while the addition of graphene in y direction can reduce the tensile strength of G/C-S-H. At the same time, the tensile strength of G/C-S-H decreases with the increase in temperature and increases with the increase in loading rate. Meanwhile, the mechanical properties of G/C-S-H can be improved using a certain concentration of monatomic vacancy defects, diatomic vacancy defects, and S-W defects.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms
    Hou, Dongshuai
    Lu, Zeyu
    Li, Xiangyu
    Ma, Hongyan
    Li, Zongjin
    CARBON, 2017, 115 : 188 - 208
  • [2] Molecular dynamics simulation and experimental study on mechanical properties and microstructure of cement-based composites enhanced by graphene oxide and graphene
    Chen, Yu
    Li, Guohao
    Li, Liangliang
    Zhang, Wenjie
    Dong, Kai
    MOLECULAR SIMULATION, 2023, 49 (03) : 251 - 262
  • [3] Study on the Effect of Residual Polymer Superplasticizer on the Properties of Graphene-Cement Composites
    Kim, Ki Yun
    An, Seok Hwan
    Lee, Jea Uk
    POLYMERS, 2024, 16 (07)
  • [4] From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites
    Gholampour, Aliakbar
    Kiarnahalleh, Meisam Valizadeh
    Tran, Diana N. H.
    Ozbakkaloglu, Togay
    Losic, Dusan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (49) : 43275 - 43286
  • [5] Study on the Mechanical Properties of Functional Graphene/Polyethylene Composites by Molecular Dynamics Simulation
    Qin, Yuanyuan
    Wang, Yifei
    Liu, Jin
    Chen, Fengfeng
    Yao, Aiying
    Chen, Zhanchun
    Fu Junyu
    MACROMOLECULAR RESEARCH, 2022, 30 (12) : 863 - 870
  • [6] Study on the Mechanical Properties of Functional Graphene/Polyethylene Composites by Molecular Dynamics Simulation
    Yuanyuan Qin
    Yifei Wang
    Jin Liu
    Fengfeng Chen
    Aiying Yao
    Zhanchun Chen
    Fu Junyu
    Macromolecular Research, 2022, 30 : 863 - 870
  • [7] Molecular Dynamics Simulation on the Mechanical Properties of Functionalized Graphene/Polydimethylsiloxane Composites
    Pan K.
    Huang W.
    Cheng H.
    Guo C.
    Huang, Wei (16980673@qq.com), 1600, Chengdu University of Science and Technology (36): : 97 - 101
  • [8] A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene
    Li, Yunlong
    Wang, Shijie
    Wang, Quan
    CARBON, 2017, 111 : 538 - 545
  • [9] Experimental Study on Mechanical and Functional Properties of Reduced Graphene Oxide/Cement Composites
    Zhang, Ning
    She, Wei
    Du, Fengyin
    Xu, Kaili
    MATERIALS, 2020, 13 (13)
  • [10] First principles and molecular dynamics simulation investigation of mechanical properties of the PTFE/graphene composites
    Pan, Deng
    Zhu, Kaifa
    Zhang, Yunzhe
    Sun, Lixiao
    Hao, Xiuhong
    COMPOSITES PART B-ENGINEERING, 2022, 242