The critical Choquard equations with a Kirchhoff type perturbation in bounded domains

被引:0
|
作者
Duan, Xueliang [1 ]
Wu, Xiaofan [1 ]
Wei, Gongming [2 ]
Yang, Haitao [3 ]
机构
[1] Zhengzhou Normal Univ, Sch Math & Stat, Zhengzhou, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
[3] Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
关键词
Choquard equation; Kirchhoff problem; critical exponent; Nehari manifold; existence; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; NONLINEARITY; MULTIPLICITY;
D O I
10.1080/00036811.2023.2271945
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the following critical Choquard equation with a Kirchhoff type perturbation in bounded domains,{-(1+b parallel to u parallel to(2))Delta u=(integral(Omega)u(2)(y)/|x-y|(4)dy)u+lambda u in Omega, u=0 on partial derivative Omega,where Omega R-N(N >= 5) is a smooth bounded domain and parallel to & sdot;parallel to is the standard norm of H-0(1)(Omega). Under the suitable assumptions on the constant b >= 0, we prove the existence of solutions for 0 < lambda <= lambda(1), where lambda(1)>0 is the first eigenvalue of -Delta on Omega. Moreover, we prove the multiplicity of solutions for lambda >lambda(1) and b>0 in suitable intervals.
引用
收藏
页码:1944 / 1962
页数:19
相关论文
共 50 条
  • [1] MULTIPLE NORMALIZED SOLUTIONS FOR CHOQUARD EQUATIONS INVOLVING KIRCHHOFF TYPE PERTURBATION
    Liu, Zeng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 297 - 319
  • [2] Multiple solutions for critical Choquard-Kirchhoff type equations
    Liang, Sihua
    Pucci, Patrizia
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 400 - 419
  • [3] PERTURBATION THEOREMS FOR FRACTIONAL CRITICAL EQUATIONS ON BOUNDED DOMAINS
    Alghanemi, Azeb
    Chtioui, Hichem
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 111 (02) : 159 - 178
  • [4] Existence and asymptotic behavior of normalized solutions for Choquard equations with Kirchhoff perturbation
    Zhu, Shanni
    Che, Guofeng
    Chen, Haibo
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2025, 119 (01)
  • [5] Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth
    Tao, Lulu
    He, Rui
    Liang, Sihua
    Niu, Rui
    AIMS MATHEMATICS, 2022, 8 (02): : 3026 - 3048
  • [7] Ground state solutions for fractional Schrodinger-Choquard-Kirchhoff type equations with critical growth
    Huang, Ling
    Wang, Li
    Feng, Shenghao
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (07) : 1624 - 1638
  • [8] NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION
    Yao, Shuai
    Chen, Haibo
    Radulescu, Vicentiu D.
    Sun, Juntao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3696 - 3723
  • [9] Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian
    Goyal, Sarika
    Mukherjee, Tuhina
    ACTA APPLICANDAE MATHEMATICAE, 2021, 172 (01)
  • [10] Normalized Solutions to the Critical Choquard-type Equations with Weakly Attractive Potential and Nonlocal Perturbation
    Long, Lei
    Li, Fuyi
    Rong, Ting
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):