Lithium-ion batteries (LIBs) play a significant role in the field of energy conversion and storage with the merits of high energy density, low self-discharge rate, and good cycle performance. Particularly, silicon (Si) is considered to be one of the most promising materials for LIBs due to its high theoretical capacity, safe and effective lithium storage principles, as well as rich resource reserves. However, during the electrochemical process, Si always suffers from low conductivity, large volume changes (300 %) and low diffusion rates of lithium-ion (Li+), which significantly affect the development in anodes of LIBs. In this review, we firstly introduce the lithium storage principle, advantages and disadvantages of Si based anodes. In addition, based on the structural characteristics of the materials, the recent progress of Si-based anodes in LIBs is reviewed from the aspects of synthesis methods, composites design and electrochemical performance. We also briefly introduce the research progress of SEI film and pre-lithiation technology. Finally, we analyze the shortcomings of the current Si-based anodes, and look forward to the future development trend of Si-based anodes for high energy density LIBs.