Automatic deep learning-based pipeline for automatic delineation and measurement of fetal brain structures in routine mid-trimester ultrasound images

被引:1
|
作者
Coronado-Gutierrez, David [1 ,2 ]
Eixarch, Elisenda [1 ,4 ,5 ]
Monterde, Elena [1 ]
Matas, Isabel [1 ]
Traversi, Paola [1 ]
Gratacos, Eduard [1 ,4 ,5 ]
Bonet-Carne, Elisenda [1 ,3 ,6 ,7 ]
Burgos-Artizzu, Xavier P. [1 ]
机构
[1] Univ Barcelona, Hosp Clin & Hosp St Joan Deu, BCNatal Fetal Med Res Ctr, Barcelona, Spain
[2] Transmural Biotech SL, Barcelona, Spain
[3] Inst Invest Biomed August Pi i Sunyer IDIBAPS, Barcelona, Spain
[4] Inst Invest Biomed August Pi i Sunyer IDIBAPS, Barcelona, Spain
[5] Ctr Biomed Res Rare Dis CIBERER, Barcelona, Spain
[6] Univ Politecn Cataluna, Barcelona Tech, Barcelona, Spain
[7] Univ Barcelona, Hosp St Joan Deu & Hosp Clin, Barcelona Ctr Maternal Fetal & Neonatal Med, BCNatal Fetal Med Res Ctr, Sabino Arana 1, Barcelona 08028, Spain
关键词
SONOGRAPHIC EXAMINATION; SEGMENTATION; GUIDELINES;
D O I
10.1159/000533203
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Introduction: The aim of this study was to develop a pipeline using state-of-the-art deep learning methods to automatically delineate and measure several of the most important brain structures in fetal brain ultrasound images.Methods: The dataset was composed of 5,331 images of fetal brain acquired during the routine mid-trimester ultrasound scan. Our proposed pipeline automatically performs the following three steps: brain plane classification (transventricular, transthalamic or transcerebellar plane); brain structures delineation (9 different structures); and automatic measurement (from the structure delineations). The methods were trained on a subset of 4,331 images and each step was evaluated on the remaining 1,000 images.Results: Plane classification reached 98.6% average class accuracy. Brain structure delineation obtained an average pixel accuracy higher than 96% and a Jaccard index higher than 70%. Automatic measurements get an absolute error below 3.5% for the four standard head biometries (head circumference, biparietal diameter, occipitofrontal diameter and cephalic index), 9% for transcerebellar diameter, 12% for cavum septi pellucidi ratio and 26% for Sylvian fissure operculization degree.Conclusions: The proposed pipeline shows the potential of deep learning methods to delineate fetal head and brain structures and obtain automatic measures of each anatomical standard plane acquired during routine fetal ultrasound examination.
引用
收藏
页码:480 / 490
页数:11
相关论文
共 50 条
  • [1] Semi-Automatic Identification of the Fetal Profile and Nasal Bone Measurement at the Time of the Routine Mid-Trimester Ultrasound Scan
    Weichert, A.
    Neymeyer, J.
    Hinkson, L.
    Weichert, T. M.
    Schmiedel, D.
    Kalache, K. D.
    [J]. ULTRASCHALL IN DER MEDIZIN, 2015, 36 (05): : 473 - 479
  • [2] An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain
    Shen, Dan Dan
    Bao, Shan Lei
    Wang, Yan
    Chen, Ying Chi
    Zhang, Yu Cheng
    Li, Xing Can
    Ding, Yu Chen
    Jia, Zhong Zheng
    [J]. PEDIATRIC RADIOLOGY, 2023, 53 (08) : 1685 - 1697
  • [3] An automatic and accurate deep learning-based neuroimaging pipeline for the neonatal brain
    Dan Dan Shen
    Shan Lei Bao
    Yan Wang
    Ying Chi Chen
    Yu Cheng Zhang
    Xing Can Li
    Yu Chen Ding
    Zhong Zheng Jia
    [J]. Pediatric Radiology, 2023, 53 : 1685 - 1697
  • [4] Deep learning-based automatic brain tissue segmentation in prenatal ultrasound
    Zanbouaa, A.
    Bouyakhf, E.
    Bassma, J.
    Slimani, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 62 : 128 - 129
  • [5] AUTOMATIC DETECTION OF LOCAL FETAL BRAIN STRUCTURES IN ULTRASOUND IMAGES
    Yaqub, M.
    Napolitano, R.
    Ioannou, C.
    Papageorghiou, A. T.
    Noble, J. A.
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1555 - 1558
  • [6] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Damjan Vukovic
    Andrew Wang
    Maria Antico
    Marian Steffens
    Igor Ruvinov
    Ruud JG van Sloun
    David Canty
    Alistair Royse
    Colin Royse
    Kavi Haji
    Jason Dowling
    Girija Chetty
    Davide Fontanarosa
    [J]. BMC Medical Informatics and Decision Making, 23
  • [7] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Vukovic, Damjan
    Wang, Andrew
    Antico, Maria
    Steffens, Marian
    Ruvinov, Igor
    van Sloun, Ruud J. G.
    Canty, David
    Royse, Alistair
    Royse, Colin
    Haji, Kavi
    Dowling, Jason
    Chetty, Girija
    Fontanarosa, Davide
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [8] Deep Learning-Based Pipeline for Automatic Identification of Intestinal Regenerating Crypts in Mouse Histological Images
    Fu, J.
    Jiang, H.
    Melemenidis, S.
    Viswanathan, V.
    Dutt, S.
    Lau, B.
    Soto, L. A.
    Manjappa, R.
    Skinner, L.
    Yu, S. J.
    Surucu, M.
    Graves, E. E.
    Casey, K.
    Rankin, E.
    Lu, W.
    Loo, B. W., Jr.
    Gut, X.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : S117 - S118
  • [9] A system-on-chip solution for deep learning-based automatic fetal biometric measurement
    Cho, Hyunwoo
    Kim, Dongju
    Chang, Sunyeob
    Kang, Jinbum
    Yoo, Yangmo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [10] Automatic fetal ultrasound image segmentation of first trimester for measuring biometric parameters based on deep learning
    Lijue Liu
    Duo Tang
    Xihong Li
    Yan Ouyang
    [J]. Multimedia Tools and Applications, 2024, 83 : 27283 - 27304