High-dimensional nonlinear Bayesian inference of poroelastic fields from pressure data

被引:0
|
作者
Karimi, Mina [1 ]
Massoudi, Mehrdad [2 ]
Dayal, Kaushik [1 ,3 ,4 ,5 ]
Pozzi, Matteo [1 ,5 ]
机构
[1] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
[2] Natl Energy Technol Lab, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Ctr Nonlinear Anal, Dept Math Sci, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Wilton E Scott Inst Energy Innovat, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Hamiltonian Monte Carlo; high-dimensional inference; Markov Chain Monte Carlo; poroelastic model; HAMILTONIAN MONTE-CARLO; STOCHASTIC NEWTON MCMC; INVERSE PROBLEMS; COMPUTATIONAL FRAMEWORK; MODEL-REDUCTION; INJECTION; OKLAHOMA; LANGEVIN;
D O I
10.1177/10812865221140840
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate solution methods for large-scale inverse problems governed by partial differential equations (PDEs) via Bayesian inference. The Bayesian framework provides a statistical setting to infer uncertain parameters from noisy measurements. To quantify posterior uncertainty, we adopt Markov Chain Monte Carlo (MCMC) approaches for generating samples. To increase the efficiency of these approaches in high-dimension, we make use of local information about gradient and Hessian of the target potential, also via Hamiltonian Monte Carlo (HMC). Our target application is inferring the field of soil permeability processing observations of pore pressure, using a nonlinear PDE poromechanics model for predicting pressure from permeability. We compare the performance of different sampling approaches in this and other settings. We also investigate the effect of dimensionality and non-gaussianity of distributions on the performance of different sampling methods.
引用
收藏
页码:2108 / 2131
页数:24
相关论文
共 50 条
  • [1] Bayesian inference for high-dimensional decomposable graphs
    Lee, Kyoungjae
    Cao, Xuan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1549 - 1582
  • [2] ASYMPTOTIC INFERENCE FOR HIGH-DIMENSIONAL DATA
    Kuelbs, Jim
    Vidyashankar, Anand N.
    ANNALS OF STATISTICS, 2010, 38 (02): : 836 - 869
  • [3] Bayesian Inference on High-Dimensional Multivariate Binary Responses
    Chakraborty, Antik
    Ou, Rihui
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [4] High-dimensional Bayesian inference in nonparametric additive models
    Shang, Zuofeng
    Li, Ping
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2804 - 2847
  • [5] Bayesian inference for high-dimensional nonstationary Gaussian processes
    Risser, Mark D.
    Turek, Daniel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (16) : 2902 - 2928
  • [6] High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering
    Wang, Lingfei
    Audenaert, Pieter
    Michoel, Tom
    FRONTIERS IN GENETICS, 2019, 10
  • [7] Inference for High-Dimensional Streamed Longitudinal Data
    Senyuan Zheng
    Ling Zhou
    Acta Mathematica Sinica,English Series, 2025, (02) : 757 - 779
  • [8] Inference for High-Dimensional Streamed Longitudinal Data
    Senyuan Zheng
    Ling Zhou
    Acta Mathematica Sinica, English Series, 2025, 41 (2) : 757 - 779
  • [9] Strong Replica Symmetry in High-Dimensional Optimal Bayesian Inference
    Jean Barbier
    Dmitry Panchenko
    Communications in Mathematical Physics, 2022, 393 : 1199 - 1239
  • [10] Projected Wasserstein Gradient Descent for High-Dimensional Bayesian Inference
    Wang, Yifei
    Chen, Peng
    Li, Wuchen
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04): : 1513 - 1532