Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning

被引:11
|
作者
Zhang, Shaowen [1 ]
Zhu, Haiping [1 ,3 ]
Wu, Jun [2 ,3 ]
Chen, Zhipeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 400073, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 400073, Peoples R China
[3] Natl Ctr Technol Innovat Intelligent Design & Nume, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; State-of-health; Convolutional neural network; Bayesian optimization; Transfer learning; CAPACITY; MODEL; OPTIMIZATION; DEGRADATION; REGRESSION; SELECTION;
D O I
10.1016/j.est.2023.108579
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Convenient and accurate state-of-health (SOH) estimation of lithium-ion batteries (LIBs) is crucial for the security of energy storage systems. However, it is a challenging task to estimate the SOH of LIB due to complex cycling conditions and limited training data. The inputs of most existing methods cannot always be satisfied under complex cycle conditions, as cycle conditions may change anytime, especially during dynamic discharge processes. Thus, we propose a new end-to-end SOH estimation method based on relaxation voltage that is not dependent on specific cycling conditions. Specifically, the relaxation voltage profiles at the end of fully charging are input to a one-dimensional convolutional neural network (CNN) to estimate SOH directly. Transfer learning is adopted to leverage the source domain knowledge to the target domain to solve the issue of limited data. Moreover, the most promising CNN hyperparameters are determined automatically by the Bayesian optimization algorithm (BOA) during the pre-training and transfer learning. The accuracy and robustness of the proposed method are verified on two publicly available datasets consisting of 121 and 4 commercial cells, respectively, with a real-driving discharge profile. The root-mean-square errors of the proposed method are 0.0128 and 0.0092, respectively, with only 1.5 % and 10 % training data from the two target domains. The method has a high potential for online applications with preferable accuracy and computational performance. Our work highlights the effectiveness and generalizability of the end-to-end LIBs SOH estimation method based on easily accessible relaxation voltage profiles.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions
    Ke, Xue
    Hong, Huawei
    Zheng, Peng
    Zhang, Shuling
    Zhu, Lingling
    Li, Zhicheng
    Cai, Jiaxin
    Fan, Peixiao
    Yang, Jun
    Wang, Jun
    Li, Li
    Kuai, Chunguang
    Guo, Yuzheng
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [2] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [3] Evolving Elman neural networks based state-of-health estimation for satellite lithium-ion batteries
    Zhang, Dengfeng
    Li, Weichen
    Han, Xiaodong
    Lu, Baochun
    Zhang, Quanling
    Bo, Cuimei
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [4] State-of-Health Estimation of Lithium-Ion Batteries based on Partial Charging Voltage Profiles
    Stroe, D. -I.
    Knap, V.
    Schaltz, E.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 379 - 386
  • [5] State-of-health estimation of lithium-ion battery based on feature transfer learning
    Li, Penghua
    Cheng, Yi
    Shan, KangHeng
    Fang, Yifan
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 889 - 894
  • [6] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [7] State-of-Health Prediction of Lithium-Ion Batteries Based on Diffusion Model with Transfer Learning
    Luo, Chenqiang
    Zhang, Zhendong
    Zhu, Shunliang
    Li, Yongying
    ENERGIES, 2023, 16 (09)
  • [8] State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
    Xu, Xiaodong
    Yu, Chuanqiang
    Tang, Shengjin
    Sun, Xiaoyan
    Si, Xiaosheng
    Wu, Lifeng
    IEEE ACCESS, 2019, 7 : 105186 - 105201
  • [9] A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model
    Fang, Qiaohua
    Wei, Xuezhe
    Lu, Tianyi
    Dai, Haifeng
    Zhu, Jiangong
    ENERGIES, 2019, 12 (07)
  • [10] Comparison-Transfer Learning Based State-of-Health Estimation for Lithium-Ion Battery
    Liu W.
    Gao S.
    Yan W.
    Journal of Electrochemical Energy Conversion and Storage, 2024, 21 (04)