SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection

被引:27
|
作者
Xiang, Tiange [1 ]
Zhang, Yixiao [2 ]
Lu, Yongyi [2 ]
Yuille, Alan L. [2 ]
Zhang, Chaoyi [1 ]
Cai, Weidong [1 ]
Zhou, Zongwei [2 ]
机构
[1] Univ Sydney, Camperdown, NSW, Australia
[2] Johns Hopkins Univ, Baltimore, MD USA
关键词
NETWORK;
D O I
10.1109/CVPR52729.2023.02288
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. To exploit this structured information, we propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID). We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image. SQUID surpasses 13 state-of-the-art methods in unsupervised anomaly detection by at least 5 points on two chest X-ray benchmark datasets measured by the Area Under the Curve (AUC). Additionally, we have created a new dataset (DigitAnatomy), which synthesizes the spatial correlation and consistent shape in chest anatomy. We hope DigitAnatomy can prompt the development, evaluation, and interpretability of anomaly detection methods.
引用
收藏
页码:23890 / 23901
页数:12
相关论文
共 50 条
  • [1] Learning deep feature correspondence for unsupervised anomaly detection and segmentation
    Yang, Jie
    Shi, Yong
    Qi, Zhiquan
    PATTERN RECOGNITION, 2022, 132
  • [2] Deep Unsupervised Anomaly Detection
    Li, Tangqing
    Wang, Zheng
    Liu, Siying
    Lin, Wen-Yan
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 3635 - 3644
  • [3] Cooperative Deep Unsupervised Anomaly Detection
    Angiulli, Fabrizio
    Fassetti, Fabio
    Ferragina, Luca
    Spada, Rosaria
    DISCOVERY SCIENCE (DS 2022), 2022, 13601 : 318 - 328
  • [4] Unsupervised Deep Subgraph Anomaly Detection
    Zhang, Zheng
    Zhao, Liang
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 753 - 762
  • [5] Latent feature reconstruction for unsupervised anomaly detection
    Lin, Jinghuang
    He, Yifan
    Xu, Weixia
    Guan, Jihong
    Zhang, Ji
    Zhou, Shuigeng
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23628 - 23640
  • [6] Latent feature reconstruction for unsupervised anomaly detection
    Jinghuang Lin
    Yifan He
    Weixia Xu
    Jihong Guan
    Ji Zhang
    Shuigeng Zhou
    Applied Intelligence, 2023, 53 : 23628 - 23640
  • [7] Unsupervised anomaly segmentation via deep feature reconstruction
    Shi, Yong
    Yang, Jie
    Qi, Zhiquan
    NEUROCOMPUTING, 2021, 424 : 9 - 22
  • [8] Dual In-painting Model for Unsupervised Gaze Correction and Animation in the Wild
    Zhang, Jichao
    Chen, Jingjing
    Tang, Hao
    Wang, Wei
    Yan, Yan
    Sangineto, Enver
    Sebe, Nicu
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 1588 - 1596
  • [9] Unsupervised Deep Anomaly Detection in Chest Radiographs
    Takahiro Nakao
    Shouhei Hanaoka
    Yukihiro Nomura
    Masaki Murata
    Tomomi Takenaga
    Soichiro Miki
    Takeyuki Watadani
    Takeharu Yoshikawa
    Naoto Hayashi
    Osamu Abe
    Journal of Digital Imaging, 2021, 34 : 418 - 427
  • [10] Unsupervised Phase Discovery with Deep Anomaly Detection
    Kottmann, Korbinian
    Huembeli, Patrick
    Lewenstein, Maciej
    Acin, Antonio
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)