Description of finite-dimensional inner Rickart and Baer Jordan algebras

被引:1
|
作者
Arzikulov, F. N. [1 ,2 ]
Khakimov, U. I. [2 ]
机构
[1] Uzbek Acad Sci, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
[2] Andizhan State Univ, Andizhan, Uzbekistan
关键词
Baer Jordan algebras; inner BJ-algebra; inner RJ-algebra; Jordan algebra; Rickart Jordan algebras;
D O I
10.1080/00927872.2022.2164586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study the Jordan counterparts of Rickart and Baer *- algebras, i.e., inner RJ-algebras and inner BJ-algebras and prove that a nilpotent Jordan algebra which has no square root nilpotent elements is an inner RJ-algebra. Also we explain that a nilpotent Jordan algebra that has no nilpotent elements with a square root b such that b(3) not equal 0 is not an inner RJ-algebra if there exists a nonzero element a such that a(2) not equal 0.As a main result of the paper we give a description of a finite-dimensional inner RJ-algebra A, isomorphic to R+N, with a nilradicalNand a finite-dimensional inner BJ-algebra with a nilradical N.
引用
收藏
页码:2501 / 2509
页数:9
相关论文
共 50 条
  • [1] Corrigendum to inner Rickart and Baer Jordan algebras
    Arzikulov, F. N.
    Khakimov, U. I.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3921 - 3931
  • [2] Jordan counterparts of Rickart and Baer *-algebras, II
    Ayupov, Shavkat
    Arzikulov, Farhodjon
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 27 - 38
  • [3] Nearly Finite-Dimensional Jordan Algebras
    Zhelyabin, V. N.
    Panasenko, A. S.
    ALGEBRA AND LOGIC, 2018, 57 (05) : 336 - 352
  • [4] Nearly Finite-Dimensional Jordan Algebras
    V. N. Zhelyabin
    A. S. Panasenko
    Algebra and Logic, 2018, 57 : 336 - 352
  • [5] Description of 2-local derivations and automorphisms on finite-dimensional Jordan algebras
    Ayupov, Sh. A.
    Arzikulov, F. N.
    Umrzaqov, N. M.
    Nuriddinov, O. O.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (18): : 3525 - 3542
  • [6] Jordan *-Derivations of Finite-Dimensional Semiprime Algebras
    Fosner, Ajda
    Lee, Tsiu-Kwen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 51 - 60
  • [7] Noetherian Jordan Banach algebras are finite-dimensional
    Benslimane, M
    Boudi, N
    JOURNAL OF ALGEBRA, 1999, 213 (01) : 340 - 350
  • [8] Finite-dimensional Jordan algebras admitting the structure of a Jordan bialgebra
    Zhelyabin V.N.
    Algebra and Logic, 1999, 38 (1) : 21 - 35
  • [9] JORDAN–KRONECKER INVARIANTS OF FINITE-DIMENSIONAL LIE ALGEBRAS
    A. V. BOLSINOV
    P. ZHANG
    Transformation Groups, 2016, 21 : 51 - 86
  • [10] JORDAN-KRONECKER INVARIANTS OF FINITE-DIMENSIONAL LIE ALGEBRAS
    Bolsinov, A. V.
    Zhang, P.
    TRANSFORMATION GROUPS, 2016, 21 (01) : 51 - 86