A general stability result for swelling porous elastic media with nonlinear damping

被引:5
|
作者
Apalara, T. [1 ]
Soufyane, A. [2 ]
Afilal, M. [3 ]
Alahyane, M. [4 ]
机构
[1] Univ Hafr Al Batin UHB, Math Dept Hafr Al Batin, Hafar al Batin, Saudi Arabia
[2] Univ Sharjah, Coll Sci, Dept Math, Sharjah, U Arab Emirates
[3] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Dept Math & Informat, Marrakech, Morocco
[4] Univ Sharjah, Dept Math, RISE, Sharjah, U Arab Emirates
关键词
Swelling porous problem; nonlinear damping; general decay; EXPONENTIAL STABILITY; SOILS;
D O I
10.1080/00036811.2021.1979218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a swelling porous-elastic system with a single nonlinear damping in the elastic equation. Recently, Ramos et al. [Stability results for elastic porous media swelling with nonlinear damping. J Math Phys. 2020;61(10):101505.] considered the same system and established a general decay result provided that the wave speeds of the system are equal. In this paper, we obtain the general decay result without imposing a condition on the wave speeds of the system. This is a striking and unexpected result compared to Timoshenko system, porous systems, and Laminated beams system with similar damping. We also perform some numerical tests to illustrate our theoretical results.
引用
收藏
页码:1183 / 1198
页数:16
相关论文
共 50 条
  • [41] Energy decay for a porous-elastic system with nonlinear localized damping
    M. L. Santos
    D. S. Almeida Júnior
    S. M. S. Cordeiro
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [42] Global attractors for porous elastic system with memory and nonlinear frictional damping
    Duan, Yu-Ying
    Xiao, Ti-Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 600 - 620
  • [43] On the stability of linear porous elastic materials with microtemperatures effects and frictional damping
    Saci, Marwa
    Khochemane, Houssem Eddine
    Djebabla, Abdelhak
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2922 - 2936
  • [44] A general stability result for a nonlinear viscoelastic equation with variable exponents
    Park, Sun-Hye
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [45] Elastic Waves in Swelling Porous Media (vol 100, pg 39, 2013)
    Tomar, S. K.
    Goyal, Suraj
    TRANSPORT IN POROUS MEDIA, 2014, 103 (02) : 315 - 324
  • [46] A general stability result for a nonlinear wave equation with infinite memory
    Messaoudi, Salim A.
    Al-Gharabli, Muhammad M.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (11) : 1082 - 1086
  • [47] Stability of shock wave structures in nonlinear elastic media
    Chugainova, A. P.
    Il'ichev, A. T.
    Shargatov, V. A.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2019, 24 (11) : 3456 - 3471
  • [48] Stability properties for nonlinear diffusion in porous and other media
    Flavin, JN
    Rionero, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) : 221 - 232
  • [49] EXPERIMENTAL-STUDY OF THE NONLINEAR PROPERTIES OF POROUS ELASTIC MEDIA
    BELYAEVA, IY
    TIMANIN, EM
    SOVIET PHYSICS ACOUSTICS-USSR, 1991, 37 (05): : 533 - 534
  • [50] On the second-type nonlinear elastic waves in porous media
    S. A. Arsen’ev
    N. K. Shelkovnikov
    Moscow University Physics Bulletin, 2007, 62 (6) : 383 - 387