A general stability result for swelling porous elastic media with nonlinear damping

被引:5
|
作者
Apalara, T. [1 ]
Soufyane, A. [2 ]
Afilal, M. [3 ]
Alahyane, M. [4 ]
机构
[1] Univ Hafr Al Batin UHB, Math Dept Hafr Al Batin, Hafar al Batin, Saudi Arabia
[2] Univ Sharjah, Coll Sci, Dept Math, Sharjah, U Arab Emirates
[3] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Dept Math & Informat, Marrakech, Morocco
[4] Univ Sharjah, Dept Math, RISE, Sharjah, U Arab Emirates
关键词
Swelling porous problem; nonlinear damping; general decay; EXPONENTIAL STABILITY; SOILS;
D O I
10.1080/00036811.2021.1979218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a swelling porous-elastic system with a single nonlinear damping in the elastic equation. Recently, Ramos et al. [Stability results for elastic porous media swelling with nonlinear damping. J Math Phys. 2020;61(10):101505.] considered the same system and established a general decay result provided that the wave speeds of the system are equal. In this paper, we obtain the general decay result without imposing a condition on the wave speeds of the system. This is a striking and unexpected result compared to Timoshenko system, porous systems, and Laminated beams system with similar damping. We also perform some numerical tests to illustrate our theoretical results.
引用
收藏
页码:1183 / 1198
页数:16
相关论文
共 50 条
  • [31] Nonlinear stability of electro-visco-elastic Walters' B type in porous media
    Moatimid, Galal
    Zekry, Marwa
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (06): : 2013 - 2027
  • [32] Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory
    Khochemane, Houssem Eddine
    Djebabla, Abdelhak
    Zitouni, Salah
    Bouzettouta, Lamine
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
  • [33] Stabilization of swelling porous elastic soils with fluid saturation by one internal damping
    Wang, Jun-Min
    Guo, Bao-Zhu
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 416 - 421
  • [34] A general decay result of a viscoelastic equation with infinite history and nonlinear damping
    Al-Gharabli, Mohammad M.
    APPLICABLE ANALYSIS, 2018, 97 (03) : 382 - 399
  • [35] General stability for piezoelectric beams with a nonlinear damping term
    Messaoudi H.
    Zitouni S.
    Khochemane H.E.
    Ardjouni A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (2) : 443 - 462
  • [36] PROPAGATION OF WAVE THROUGH CYLINDRICAL BORE IN A SWELLING POROUS ELASTIC MEDIA
    Kumar, Rajneesh
    Divya
    Kumar, Kuldeep
    MATERIALS PHYSICS AND MECHANICS, 2013, 16 (02): : 135 - 143
  • [37] AN UNIQUENESS RESULT FOR NONLINEAR DEGENERATE PROCESSES IN POROUS-MEDIA
    GAGNEUX, G
    MADAUNETORT, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (08): : 605 - 608
  • [38] Elastic wave damping in thin-layered saturated porous media
    Egorov, A.G.
    Applied Mathematics and Mechanics (English translation of Prikladnaya Matematika i Mekhanika), 1600, 53 (06):
  • [39] GENERAL DECAY OF POROUS ELASTIC SYSTEM WITH THERMO-VISCOELASTIC DAMPING
    Djellali, F.
    Labidi, S.
    Taallah, F.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2021, 9 (01): : 31 - 43
  • [40] Energy decay for a porous-elastic system with nonlinear localized damping
    Santos, M. L.
    Almeida Junior, D. S.
    Cordeiro, S. M. S.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):