Safe Control of Euler-Lagrange Systems with Limited Model Information

被引:0
|
作者
Wang, Yujie [1 ]
Xu, Xiangru [1 ]
机构
[1] Univ Wisconsin Madison, Dept Mech Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
CONTROL BARRIER FUNCTIONS; ROBOT MANIPULATORS; ADAPTIVE-CONTROL;
D O I
10.1109/CDC49753.2023.10384132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method.
引用
收藏
页码:5722 / 5728
页数:7
相关论文
共 50 条
  • [1] Safe-by-design control for Euler-Lagrange systems
    Cortez, Wenceslao Shaw
    Dimarogonas, Dimos V.
    AUTOMATICA, 2022, 146
  • [2] Linear control of Euler-Lagrange systems
    Alvarez-Ramirez, J
    Cervantes, I
    PHYSICS LETTERS A, 2000, 278 (1-2) : 77 - 87
  • [3] Safe Control with Control Barrier Function for Euler-Lagrange Systems Facing Position Constraint
    Farras, Aditya Wildan
    Hatanaka, Takeshi
    2021 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS (SICE ISCS 2021), 2021, : 28 - 32
  • [4] Output feedback control of uncertain Euler-Lagrange systems by internal model
    He, Xingxiu
    Lu, Maobin
    AUTOMATICA, 2023, 156
  • [5] Optimal control of a class of pseudo Euler-Lagrange systems
    Rodrigues, L.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2017, 38 (02): : 266 - 278
  • [6] Control of contact problem in constrained Euler-Lagrange systems
    Pagilla, PR
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (10) : 1595 - 1599
  • [7] Saturated RISE Feedback Control for Euler-Lagrange Systems
    Fischer, N.
    Kan, Z.
    Dixon, W. E.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 244 - 249
  • [8] Adaptive H∞ Formation Control for Euler-Lagrange Systems
    Miyasato, Yoshihiko
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2614 - 2619
  • [9] Control of contact problem in constrained Euler-Lagrange systems
    Pagilla, PR
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1249 - 1250
  • [10] Model-Free Optimal Consensus Control of Networked Euler-Lagrange Systems
    Zhang, Huaipin
    Park, Ju H.
    Zhao, Wei
    IEEE ACCESS, 2019, 7 : 100771 - 100779