Radiomics and Machine Learning for Skeletal Muscle Injury Recovery Prediction

被引:1
|
作者
Eleftheriadis, Vasileios [1 ]
Camacho, Jose Raul Herance [2 ]
Paneta, Valentina [1 ]
Paun, Bruno [2 ]
Aparicio, Carolina [2 ]
Venegas, Vanesa [3 ,4 ]
Marotta, Mario [3 ,4 ]
Masa, Marc [3 ]
Loudos, George [1 ]
Papadimitroulas, Panagiotis [1 ]
机构
[1] Bioemiss Technol Solut, R&D Dept, Athens 15343, Greece
[2] Univ Autonoma Barcelona, Hosp Univ Vall Hebron, Vall Hebron Res Inst, Med Mol Imaging Grp,CIBER BBN,CIBBIM Nanomed,ISCII, Barcelona 08035, Spain
[3] Leitat Technol Ctr, Hlth & Biomed Dept, Barcelona 08225, Spain
[4] Univ Autonoma Barcelona, Hosp Univ Vall Hebron, Vall Hebron Res Inst, Bioengn Cell Therapy & Surg Congenital Malformat L, Barcelona 08035, Spain
基金
欧盟地平线“2020”;
关键词
Computed tomography (CT); machine learn-ing (ML); muscle injury; preclinical imaging; prediction model; radiomics; recovery; ARTIFICIAL-INTELLIGENCE; FOOTBALL; RETURN; CHALLENGES; REGRESSION; SELECTION; IMAGES; MODEL; MRI;
D O I
10.1109/TRPMS.2023.3291848
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics as a novel quantitative approach to medical imaging is an emerging area in the field of radiology. Artificial intelligence offers promising tools for exploiting and analyzing radiomics. The objective of the present study is to propose a methodology for the design, development, and evaluation of machine learning (ML) models for the prediction of the recovery progress of skeletal muscle injury over time in rats using radiomics. Radiomics were extracted from contrast enhanced computed tomography (CT) data and ML algorithms were trained and compared for their predictive value based on different CT imaging parameters. Ten different ML regression algorithms were tested and the optimal combination of radiomics for each algorithm and CT imaging parameter settings combination was studied. The best ensemble learning model, trained on the 70 kVp, 100 mA imaging parameter dataset, achieved a mean absolute error score of 1.22. The results suggest that radiomics extracted from CT images can be used as input in ML regression algorithms to predict the volume of a skeletal muscle injury in rats. Moreover, the results show that CT imaging settings impact the predictive performance of the ML regression models, indicating that lower values of tube current and peak kilovoltage contribute to more accurate predictions.
引用
收藏
页码:830 / 838
页数:9
相关论文
共 50 条
  • [2] Skeletal muscle gauge prediction by a machine learning model in patients with colorectal cancer
    Lim, Jun Young
    Kim, Young Min
    Lee, Hye Sun
    Kang, Jeonghyun
    NUTRITION, 2023, 115
  • [3] The role of radiomics with machine learning in the prediction of muscle-invasive bladder cancer: A mini review
    Huang, Xiaodan
    Wang, Xiangyu
    Lan, Xinxin
    Deng, Jinhuan
    Lei, Yi
    Lin, Fan
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [4] Prediction of gait recovery using machine learning algorithms in patients with spinal cord injury
    Yoo, Hyun-Joon
    Koo, Bummo
    Yong, Chan-woo
    Lee, Kwang-Sig
    MEDICINE, 2024, 103 (23)
  • [5] Recovery of slow skeletal muscle after injury in the senescent rat
    Vignaud, A
    Noirez, P
    Besse, S
    Rieu, M
    Barritault, D
    Ferry, A
    EXPERIMENTAL GERONTOLOGY, 2003, 38 (05) : 529 - 537
  • [6] Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury
    Howard, Emily E.
    Pasiakos, Stefan M.
    Blesso, Christopher N.
    Fussell, Maya A.
    Rodriguez, Nancy R.
    FRONTIERS IN PHYSIOLOGY, 2020, 11
  • [7] Prediction of incident cardiovascular events using machine learning and CMR radiomics
    Pujadas, Esmeralda Ruiz
    Raisi-Estabragh, Zahra
    Szabo, Liliana
    McCracken, Celeste
    Morcillo, Cristian Izquierdo
    Campello, Victor M.
    Martin-Isla, Carlos
    Atehortua, Angelica M. M.
    Vago, Hajnalka
    Merkely, Bela
    Maurovich-Horvat, Pal
    Harvey, Nicholas C. C.
    Neubauer, Stefan
    Petersen, Steffen E. E.
    Lekadir, Karim
    EUROPEAN RADIOLOGY, 2023, 33 (05) : 3488 - 3500
  • [8] Beyond the AJR: Radiomics Meets Machine Learning to Improve Outcome Prediction
    De Cecco, Carlo N.
    Monti, Caterina B.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (05) : 844 - 844
  • [9] Enhancing Prediction of Myocardial Recovery After Coronary Revascularization: Integrating Radiomics from Myocardial Contrast Echocardiography with Machine Learning
    Huang, Deyi
    Yang, Xingan
    Ruan, Hongbiao
    Zhuo, Yushui
    Yuan, Kai
    Ruan, Bowen
    Li, Fang
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2024, 17 : 2539 - 2555
  • [10] Prediction of incident cardiovascular events using machine learning and CMR radiomics
    Esmeralda Ruiz Pujadas
    Zahra Raisi-Estabragh
    Liliana Szabo
    Celeste McCracken
    Cristian Izquierdo Morcillo
    Víctor M. Campello
    Carlos Martín-Isla
    Angelica M. Atehortua
    Hajnalka Vago
    Bela Merkely
    Pal Maurovich-Horvat
    Nicholas C. Harvey
    Stefan Neubauer
    Steffen E. Petersen
    Karim Lekadir
    European Radiology, 2023, 33 : 3488 - 3500