A simple and accurate closed-form analytical solution to the Boussinesq equation for horizontal flow

被引:1
|
作者
Hayek, Mohamed [1 ]
机构
[1] INTERA Inc, Swiss Branch, Hardstr 73, CH-5430 Wettingen, Switzerland
关键词
Boussinesq equation; Aquifer recharge and discharge; Groundwater hydrology; Analytical solution; GROUNDWATER-FLOW; SIMILARITY SOLUTION; UNCONFINED FLOW;
D O I
10.1016/j.advwatres.2024.104628
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The classical problem used to model the response of an unconfined aquifer to a sudden change in boundary head is considered in this paper. This problem is usually modeled using the nonlinear groundwater Boussinesq equation. Due to the nonlinearity of this problem, no exact solutions exist. Solutions to the Boussinesq equation are therefore obtained using numerical techniques or approximate analytical methods. In this paper, we present a novel closed-form approximate analytical solution to this problem. The Boussinesq equation is converted to a first-order ordinary differential equation (ODE) by means of the Boltzmann transformation and by introducing a new variable related to the water flow. The first-order ODE is then solved analytically after introducing an intermediate approximation involving two fitting parameters. To avoid any numerical treatment, closed-form polynomial expressions of the fitting parameters are proposed. The final-form solution is simple to use and is obtained in terms of the incomplete gamma function, which is valid for both recharge and discharge. The derived solution is tested and compared to efficient numerical solutions, as well as to two types of analytical solutions: an accurate series expansion solution and an equivalent closed-form solution. The results show excellent agreement between the proposed solution and the numerical and series solutions. The proposed solution offers a key advantage in terms of both accuracy and simplicity; notably, it can be implemented using a simple spreadsheet.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A SIMPLE SMOOTHER - CLOSED-FORM SOLUTION AND ANALYTICAL RESULTS
    MIETH, HJ
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1991, 27 (02) : 208 - 213
  • [2] An accurate closed-form approximate solution for the quintic Duffing oscillator equation
    Belendez, A.
    Bernabeu, G.
    Frances, J.
    Mendez, D. I.
    Marini, S.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (3-4) : 637 - 641
  • [3] A Simple Closed-Form Expression Solution
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2021, 59 (04): : 369 - 369
  • [4] Closed-Form Solution of a Rational Difference Equation
    Ibrahim, Tarek F.
    Khan, Abdul Qadeer
    Ogul, Burak
    Simsek, Dagistan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [5] Accurate closed-form solution of the SIR epidemic model
    Barlow, Nathaniel S.
    Weinstein, Steven J.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
  • [6] A New Accurate Closed-Form Analytical Solution for Junction Temperature of High-Powered Devices
    Ling, J. H. L.
    Tay, A. A. O.
    JOURNAL OF ELECTRONIC PACKAGING, 2014, 136 (01)
  • [7] A simple closed-form solution for assessing concentration uncertainty
    de Barros, F. P. J.
    Fiori, Aldo
    Bellin, Alberto
    WATER RESOURCES RESEARCH, 2011, 47
  • [8] A SIMPLE ANALYTICAL SOLUTION FOR THE BOUSSINESQ ONE-DIMENSIONAL GROUNDWATER-FLOW EQUATION
    TOLIKAS, PK
    SIDIROPOULOS, EG
    TZIMOPOULOS, CD
    WATER RESOURCES RESEARCH, 1984, 20 (01) : 24 - 28
  • [9] Closed-Form Analytical Solutions for Laminar Natural Convection on Horizontal Plates
    Guha, Abhijit
    Samanta, Subho
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (10):
  • [10] Closed-form solution of the potential flow in a contracted flume
    Belaud, G.
    Litrico, X.
    JOURNAL OF FLUID MECHANICS, 2008, 599 : 299 - 307