Amorphous Thickness-Dependent Strengthening-Softening Transition in Crystalline-Amorphous Nanocomposites

被引:4
|
作者
Qian, Lei [1 ,2 ]
Yang, Wenqing [1 ]
Luo, Jiasi [1 ]
Wang, Yunjiang [3 ]
Chan, K. C. [1 ]
Yang, Xu-Sheng [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Adv Mfg, Dept Ind & Syst Engn, Kowloon, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518060, Peoples R China
[3] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
crystalline-amorphous nanocomposite; Cu-CuTa; atomistic simulations; codeformationcooperative mechanisms; MECHANICAL-BEHAVIOR; DEFORMATION MECHANISMS; SIZE; DUCTILITY; FILMS;
D O I
10.1021/acs.nanolett.3c03848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Core-shell crystalline-amorphous nanocomposites, featuring nanograins surrounded by thick amorphous boundaries, are promising nanoarchitectures for achieving exceptional strength through cooperative strengthening effects. However, a comprehensive understanding of the influence of characteristic sizes, particularly the amorphous thickness, on codeformation strengthening is still lacking, limiting the attainment of the strength limit. Here, we employ molecular dynamics simulations to investigate Cu-CuTa crystalline-amorphous nanocomposites with varying grain sizes and amorphous thicknesses. Our findings demonstrate significant strengthening effects in nanocomposites, effectively suppressing the Hall-Petch breakdown observed in traditional amorphous-free nanograined Cu. Intriguingly, we observe a maximum strength followed by a strengthening-softening transition dependent on the amorphous thickness, as exemplified by a representative nanocomposite featuring a 12.5 nm grain size and a critical amorphous thickness of 4 nm. Inspired by observed shifts in atomistic mechanisms, we developed a theoretical model encompassing variations in grain size and amorphous thickness, providing valuable insights into the size-strength relationship for crystalline-amorphous nanocomposites.
引用
收藏
页码:11288 / 11296
页数:9
相关论文
共 50 条
  • [1] Twin thickness-dependent tensile deformation mechanism on strengthening-softening of Si nanowires
    Yimer, Mohammed Meaza
    Wubeshet, Debela Abeyot
    Qin, Xiangge
    [J]. HELIYON, 2023, 9 (05)
  • [2] CRYSTALLINE-AMORPHOUS TRANSITION IN SILICATE PEROVSKITES
    HEMMATI, M
    CHIZMESHYA, A
    WOLF, GH
    POOLE, PH
    SHAO, J
    ANGELL, CA
    [J]. PHYSICAL REVIEW B, 1995, 51 (21): : 14841 - 14848
  • [3] Load-adaptive crystalline-amorphous nanocomposites
    Voevodin, AA
    Zabinski, JS
    [J]. JOURNAL OF MATERIALS SCIENCE, 1998, 33 (02) : 319 - 327
  • [4] TEMPERATURE-DEPENDENT CRYSTALLINE-AMORPHOUS STRUCTURES IN LINEAR POLYETHYLENE - SURFACE MELTING AND THE THICKNESS OF THE AMORPHOUS LAYERS
    ALBRECHT, T
    STROBL, G
    [J]. MACROMOLECULES, 1995, 28 (17) : 5827 - 5833
  • [5] Atomistic Design of High Strength Crystalline-Amorphous Nanocomposites
    Yamamoto, Shin
    Wang, Yun-Jiang
    Ishii, Akio
    Ogata, Shigenobu
    [J]. MATERIALS TRANSACTIONS, 2013, 54 (09) : 1592 - 1596
  • [6] Ion implantation damage and crystalline-amorphous transition in Ge
    G. Impellizzeri
    S. Mirabella
    M. G. Grimaldi
    [J]. Applied Physics A, 2011, 103 : 323 - 328
  • [7] Ion implantation damage and crystalline-amorphous transition in Ge
    Impellizzeri, G.
    Mirabella, S.
    Grimaldi, M. G.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 103 (02): : 323 - 328
  • [8] Ductile crystalline-amorphous nanolaminates
    Wang, Yinmin
    Li, Ju
    Hamza, Alex V.
    Barbee, Troy W., Jr.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (27) : 11155 - 11160
  • [9] Strengthening-softening transition and maximum strength in Schwarz nanocrystals
    Hanzheng Xing
    Jiaxi Jiang
    Yujia Wang
    Yongpan Zeng
    Xiaoyan Li
    [J]. NanoMaterialsScience, 2024, 6 (03) : 320 - 328
  • [10] CRYSTALLINE-AMORPHOUS PHASE-TRANSITION IN HEAVILY DOPED SILICON
    GRATZSCHEL, R
    DVURECHENSKII, AV
    POPOV, VP
    [J]. FIZIKA TVERDOGO TELA, 1986, 28 (10): : 3134 - 3136