Borel Chain Conditions of Borel Posets

被引:0
|
作者
Xiao, Ming [1 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
mathematical logic; set theory; descriptive set theory; descriptive combinatorics; HORN;
D O I
10.3390/math11153349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the coarse classification of partial orderings using chain conditions in the context of descriptive combinatorics. We show that (unlike the Borel counterpart of many other combinatorial notions), we have a strict hierarchy of different chain conditions, similar to the classical case.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] BOREL STRUCTURES AND BOREL THEORIES
    Hjorth, Greg
    Nies, Andre
    JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (02) : 461 - 476
  • [2] APPROXIMATION OF ANALYTIC BY BOREL SETS AND DEFINABLE COUNTABLE CHAIN-CONDITIONS
    KECHRIS, AS
    SOLECKI, S
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 89 (1-3) : 343 - 356
  • [3] A Borel chain condition of T(X)
    Todorcevic, S.
    Xiao, M.
    ACTA MATHEMATICA HUNGARICA, 2020, 160 (02) : 314 - 319
  • [4] A Borel chain condition of T(X)
    S. Todorcevic
    M. Xiao
    Acta Mathematica Hungarica, 2020, 160 : 314 - 319
  • [5] Borel on the questions versus Borel on the answers
    Mildenberger, H
    MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (01) : 127 - 133
  • [6] BOREL CONJECTURE AND DUAL BOREL CONJECTURE
    Goldstern, Martin
    Kellner, Jakob
    Shelah, Saharon
    Wohofsky, Wolfgang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (01) : 245 - 307
  • [7] FRECHET BOREL IDEALS WITH BOREL ORTHOGONAL
    Guevara, Francisco
    Uzcategui, Carlos
    COLLOQUIUM MATHEMATICUM, 2018, 152 (01) : 141 - 163
  • [8] Borel structures on the set of Borel mappings
    Georgiou, Dimitris
    Kougias, Ioannis
    Megaritis, Athanasios
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1906 - 1915
  • [9] EVERY BOREL FUNCTION IS MONOTONE BOREL
    ZIVALJEVIC, B
    ANNALS OF PURE AND APPLIED LOGIC, 1991, 54 (01) : 87 - 99
  • [10] THE RECIPROCAL OF A BOREL SUMMABLE FUNCTION IS BOREL SUMMABLE
    AUBERSON, G
    MENNESSIER, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (03) : 439 - 446