Nowadays, issues such as limited natural resources, environmental problems, social matters, and significance of resilience in agricultural supply chain (ASC) have dragged considerable attention worldwide. In this research, a five-level multi-objective stochastic mixed-integer linear programming model is designed for tea supply chain (TSC) in Iran. The objective functions of the suggested network are minimizing total costs of the supply chain (SC), the total water consumption, and non-resilience measures, and maximizing job opportunities of facilities. Literally, considering uncertainty for SC networks is extremely beneficial due to the existence of some variations in different parameters like demand. As a consequence, a robust possibilistic optimization (RPO) is implemented to manage the uncertainty. Due to the nature of the multi-objective optimization problem, the weightednormalized-extended goal programming (WNEGP) approach is employed to solve the model. In order to credit the model, real data is collected from the tea organization of Iran. It is worth mentioning that parameters are gathered according to three aspects of big data: volume, velocity, and variety. The results validated the functionality of the model regarding planning strategy. In addition, it showed applying more costs on SC triggers an effective sustainable-resilient-responsive network. In terms of managerial insights, this study offers a far-reaching perspective to managers especially in ASC to develop their industries. Finally, some sensitivity analyses are discussed on key parameters such as demand, robustness coefficients, and also the value of the objective functions in various states. It is worth mentioning that sensitivity analyses on different states of the problem show how sustainability and resiliency affect the supply chain efficiency.