Castelnuovo-Mumford regularity of ladder determinantal varieties and patches of Grassmannian Schubert varieties

被引:4
|
作者
Rajchgot, Jenna [1 ]
Robichaux, Colleen [2 ]
Weigandt, Anna [3 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] MIT, Dept Math, Cambridge, MA 02142 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Castelnuovo-Mumford regularity; Ladder determinantal ideal; Matrix Schubert variety; Grassmannian; Grothendieck polynomial; GROBNER GEOMETRY; K-THEORY; POLYNOMIALS; BASES; LOCI;
D O I
10.1016/j.jalgebra.2022.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give degree formulas for Grothendieck polynomials indexed by vexillary permutations and 1432-avoiding permutations via tableau combinatorics. These formulas generalize a formula for degrees of symmetric Grothendieck polynomials which appeared in previous joint work of the authors with Y. Ren and A. St. Dizier. We apply our formulas to compute Castelnuovo-Mumford regularity of classes of generalized determinantal ideals. In particular, we give combinatorial formulas for the regularities of all one-sided mixed ladder determinantal ideals. We also derive formulas for the regularities of certain Kazhdan-Lusztig ideals, including those coming from open patches of Schubert varieties in Grassmannians. This provides a correction to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri (2015). (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 191
页数:32
相关论文
共 50 条