Exploration of Wire Array Metamaterials for the Plasma Axion Haloscope

被引:2
|
作者
Wooten, Mackenzie [1 ]
Droster, Alex [1 ]
Kenany, Al [1 ,2 ]
Sun, Dajie M. [1 ]
Lewis, Samantha M. [1 ]
van Bibber, Karl [1 ]
机构
[1] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
[2] Accelerator Technol & Appl Phys Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
axions; haloscope; metamaterials; plasma frequency;
D O I
10.1002/andp.202200479
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A plasma haloscope has recently been proposed as a feasible approach to extend the search for dark matter axions above 10 GHz (approximate to 40 mu$\umu$eV), whereby the microwave cavity in a conventional axion haloscope is supplanted by a wire array metamaterial. Since the plasma frequency of a metamaterial is determined by its unit cell, and is thus a bulk property, a metamaterial resonator of any frequency can be made arbitrarily large, in contrast to a microwave cavity which incurs a steep penalty in volume with increasing frequency. To assess the actual potential of this concept as a practical dark matter haloscope, the basic properties of wire array metamaterials have been investigated through an extensive series of S-21 measurements in the 10 GHz range. This report presents some new systematics of wire array metamaterials themselves including the approach to full plasmonic behavior, the applicability of the semianalytic theory of Belov, and estimates of the loss term which bode favorably for the plasmonic haloscope application. This present work constitutes the first precision test of the semianalytic theory of Belov et al., for which the predicted plasma frequency agrees with the experimental value at the 0.1% level.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Tunable wire metamaterials for an axion haloscope
    Kowitt N.
    Balafendiev R.
    Sun D.
    Wooten M.
    Droster A.
    Gorlach M.A.
    Van Bibber K.
    Belov P.A.
    Physical Review Applied, 2023, 20 (04)
  • [2] Axion haloscope array with PT symmetry
    Chen, Yifan
    Jiang, Minyuan
    Ma, Yiqiu
    Shu, Jing
    Yang, Yuting
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [3] Horn-array haloscope for volume-efficient broadband axion searches
    Jeong, Junu
    Youn, Sungwoo
    Semertzidis, Yannis K.
    PHYSICAL REVIEW D, 2023, 108 (05)
  • [4] Building instructions for a ferromagnetic axion haloscope
    Nicolò Crescini
    The European Physical Journal Plus, 137
  • [5] Building instructions for a ferromagnetic axion haloscope
    Crescini, Nicolo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (03):
  • [6] Improved axion haloscope search analysis
    S. Ahn
    S. Lee
    J. Choi
    B. R. Ko
    Y. K. Semertzidis
    Journal of High Energy Physics, 2021
  • [7] Improved axion haloscope search analysis
    Ahn, S.
    Lee, S.
    Choi, J.
    Ko, B. R.
    Semertzidis, Y. K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (04)
  • [8] Effective approximation of electromagnetism for axion haloscope searches
    Kim, Younggeun
    Kim, Dongok
    Jeong, Junu
    Kim, Jinsu
    Shin, Yun Chang
    Semertzidis, Yannis K.
    PHYSICS OF THE DARK UNIVERSE, 2019, 26
  • [9] Analytical considerations for optimal axion haloscope design
    Jeong, Junu
    Youn, SungWoo
    Bae, Sungjae
    Kim, Dongok
    Kim, Younggeun
    Semertzidis, Yannis K.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2022, 49 (05)
  • [10] Axion haloscope signal power from reciprocity
    Egge, Jacob
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (04):