Hammock Plots: Visualizing Categorical and Numerical Variables

被引:0
|
作者
Schonlau, Matthias [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
关键词
Alluvial plots; Common angle; Data visualization; GPCP; Line width illusion; ParSets plots;
D O I
10.1080/10618600.2024.2322561
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
I discuss the hammock plot for visualizing categorical or mixed categorical/numeric data. Hammock plots can be viewed as a generalization of parallel coordinate plots where the lines are replaced by boxes (or plotting elements) and the width of the boxes is proportional to the number of observations they represent. The article also introduces a modification to the hammock plot to avoid what Hoffman et al. termed the reverse line width illusion. Further, I give an historical overview over hammock-type plots such as common angle, GPCP, parsets, and alluvial plots and discuss the type of boxes used to connect adjacent variables. Supplementary materials for this article are available online.
引用
收藏
页码:1475 / 1487
页数:13
相关论文
共 50 条
  • [1] Nonparametric multivariate control chart for numerical and categorical variables
    Jin, Jiayun
    Loosveldt, Geert
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (01) : 457 - 475
  • [2] Conversion of categorical variables into numerical variables via Bayesian network classifiers for binary classifications
    Lee, Namgil
    Kim, Jong-Min
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (05) : 1247 - 1265
  • [3] Visualizing coevolution with CIAO plots
    Cliff, D
    Miller, GF
    ARTIFICIAL LIFE, 2006, 12 (02) : 199 - 202
  • [4] Visualizing samples with box plots
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2014, 11 (02) : 119 - 120
  • [5] Visualizing Multiple Quantile Plots
    Boon, Marko A. A.
    Einmahl, John H. J.
    McKeague, Ian W.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (01) : 69 - 78
  • [6] Visualizing samples with box plots
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2014, 11 : 119 - 120
  • [7] Visualizing categorical data in ViSta
    Valero-Mora, PM
    Young, FW
    Friendly, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 43 (04) : 495 - 508
  • [8] A semi-supervised regression model for mixed numerical and categorical variables
    Ng, Michael K.
    Chan, Elaine Y.
    So, Meko M. C.
    Ching, Wai-Ki
    PATTERN RECOGNITION, 2007, 40 (06) : 1745 - 1752
  • [9] A von Mises–Fisher mixture model for clustering numerical and categorical variables
    Xavier Bry
    Lionel Cucala
    Advances in Data Analysis and Classification, 2022, 16 : 429 - 455
  • [10] Sclow Plots: Visualizing Empty Space
    Giesen, J.
    Kuehne, L.
    Lucas, P.
    COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 145 - 155