Rogue Waves and Their Patterns in the Vector Nonlinear Schrodinger Equation

被引:19
|
作者
Zhang, Guangxiong [1 ]
Huang, Peng [1 ]
Feng, Bao-Feng [2 ]
Wu, Chengfa [1 ,3 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Univ Texas Rio Grande Valley Edinburg, Sch Math & Stat Sci, Edinburg, TX 78541 USA
[3] Shenzhen Univ, Sch Math Sci, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Kadomtsev-Petviashvili reduction method; Vector nonlinear Schrodinger equation; Rogue wave pattern; Wronskian-Hermite polynomials; PAINLEVE EQUATION; ORDER; SOLITONS; 2ND; ASYMPTOTICS; POLYNOMIALS;
D O I
10.1007/s00332-023-09971-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the general rogue wave solutions and their patterns in the vector (or M-component) nonlinear Schrodinger (NLS) equation. By applying the Kadomtsev-Petviashvili reduction method, we derive an explicit solution for the rogue wave expressed by tau functions that are determinants of K x K block matrices (1 <= K <= M) with an index jump of M + 1. Patterns of the rogue waves for M = 3, 4 and K = 1 are thoroughly investigated. It is found that when one of the internal parameters is large enough, the wave pattern is linked to the root structure of a generalized Wronskian-Hermite polynomial hierarchy in contrast with rogue wave patterns of the scalar NLS equation, theManakov system, and many others. Moreover, the generalized Wronskian-Hermite polynomial hierarchy includes the Yablonskii-Vorob'ev polynomial and Okamoto polynomial hierarchies as special cases, which have been used to describe the rogue wave patterns of the scalar NLS equation and the Manakov system, respectively. As a result, we extend the most recent results by Yang et al. for the scalar NLS equation and the Manakov system. It is noted that the case M = 3 displays a new feature different from the previous results. The predicted rogue wave patterns are compared with the ones of the true solutions for both cases of M = 3, 4. An excellent agreement is achieved.
引用
收藏
页数:64
相关论文
共 50 条
  • [1] DYNAMICS OF ROGUE WAVES ON A MULTISOLITON BACKGROUND IN A VECTOR NONLINEAR SCHRODINGER EQUATION
    Mu, Gui
    Qin, Zhenyun
    Grimshaw, Roger
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2015, 75 (01) : 1 - 20
  • [2] Rogue Waves and Their Patterns in the Vector Nonlinear Schrödinger Equation
    Guangxiong Zhang
    Peng Huang
    Bao-Feng Feng
    Chengfa Wu
    Journal of Nonlinear Science, 2023, 33
  • [3] Rogue Waves of the Vector Nonlinear Schrodinger Equations
    Baronio, F.
    Conforti, M.
    Wabnitz, S.
    Degasperis, A.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [4] Rogue wave patterns in the nonlinear Schrodinger equation
    Yang, Bo
    Yang, Jianke
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 419
  • [5] Rogue periodic waves of the focusing nonlinear Schrodinger equation
    Chen, Jinbing
    Pelinovsky, Dmitry E.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2210):
  • [6] Rogue wave patterns in the nonlocal nonlinear Schrodinger equation
    Zhang, Guangxiong
    Wu, Chengfa
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [7] Vector rogue waves in the mixed coupled nonlinear Schrodinger equations
    Li, Min
    Liang, Huan
    Xu, Tao
    Liu, Changjing
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (04):
  • [8] Coexistence of the breather and the rogue waves for a coupled nonlinear Schrodinger equation
    Guo, Ya-Hui
    Zuo, Da-Wei
    PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04):
  • [9] Rogue waves for an inhomogeneous discrete nonlinear Schrodinger equation in a lattice
    Wu, Xiao-Yu
    Tian, Bo
    Du, Zhong
    Du, Xia-Xia
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [10] Optical rogue waves for the inhomogeneous generalized nonlinear Schrodinger equation
    Loomba, Shally
    Kaur, Harleen
    PHYSICAL REVIEW E, 2013, 88 (06):