Unexpected deformation-induced martensitic phase transformations in Ni-Cr and Ni-Cr-Fe alloys

被引:5
|
作者
Clement, Caleb D. [1 ,2 ]
Yang, Chao [1 ,3 ]
Wharry, Janelle P. [1 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[2] Westinghouse Elect Co LLC, Global Technol Dev, Pittsburgh, PA USA
[3] Rensselaer Polytech Inst, Troy, NY USA
关键词
STACKING-FAULT ENERGY; AUSTENITIC STAINLESS-STEEL; STRAIN-RATE; PM-HIP; INSTRUMENTED INDENTATION; MECHANICAL-PROPERTIES; CORROSION-RESISTANCE; PLASTIC-DEFORMATION; REVERSED AUSTENITE; BEHAVIOR;
D O I
10.1016/j.msea.2023.146029
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Deformation of Ni-Cr and Ni-Cr-Fe alloys has historically been understood to occur through dislocation slip, while deformation-induced martensitic transformations are believed to be suppressed by the high stacking fault energy (SFE). The present study challenges these longstanding beliefs with experimental and theoretical evidence of deformation-induced martensitic transformations in Alloy 625 and Ni-20Cr, respectively. Systematic investigations are conducted along the three principal grain orientations; experiments employ nanoindentation coupled with post mortem transmission electron microscopy (TEM) analysis, while molecular dynamics (MD) simulations are conducted in uniaxial tension. Experimental results reveal gamma ->epsilon and gamma ->epsilon ->alpha ' martensitic transformations in Alloy 625 consistent with the Bogers-Burgers-Olson-Cohen (BBOC) intersecting shear mode. The orientation relationship is characterized as a distorted Shoji-Nishiyama OR between FCC/HCP and Kurdjumov-Sachs OR between FCC/BCC. By contrast, Alloy 690 does not exhibit martensitic transformations despite having a lower SFE than Alloy 625, due to Mo solute strengthening in Alloy 625. MD simulations reveal consistent transformation mechanisms across grain orientations, but orientation-dependent differences in Schmid factors and critical resolved shear stress affect the strain evolution and extent of the transformation. This study concludes that SFE alone may not comprehensively dictate whether deformation-induced martensitic transformations will occur; other factors such as free energy and strain rate also influence transformability.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Beneficial effect of copper on pitting resistance of Ni-Cr-Fe alloys
    Hariharan, Karthikeyan
    Li, Sirui
    Taylor, Christopher D.
    Sridhar, Narasi
    Frankel, Gerald S.
    Schindelholz, Eric J.
    ELECTROCHIMICA ACTA, 2023, 468
  • [32] INFLUENCE OF BE ON CASTABILITY OF NI-CR ALLOYS
    COHEN, S
    VAIDYANATHAN, TK
    SCHULMAN, A
    JOURNAL OF DENTAL RESEARCH, 1986, 65 : 237 - 237
  • [33] INTERBAND ABSORPTION OF NI-CR ALLOYS
    GORBAN, NY
    STASHCHUK, VS
    OPTIKA I SPEKTROSKOPIYA, 1976, 41 (03): : 501 - 504
  • [34] ESCA STUDIES OF NI-CR ALLOYS
    LIM, AS
    ATRENS, A
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1992, 54 (04): : 343 - 349
  • [35] OXIDE COMPOUNDS ON NI-CR ALLOYS
    BARAN, GR
    JOURNAL OF DENTAL RESEARCH, 1984, 63 (11) : 1332 - 1334
  • [36] SEGREGATION AND OXIDATION OF NI-CR ALLOYS
    HOLLOWAY, PH
    JENG, SP
    DYKSTAL, C
    LAMBERS, E
    BATICH, C
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 148 - COLL
  • [37] PHASE-SEPARATION AND LAYER SEQUENCE REVERSAL DURING SILICIDE FORMATION WITH NI-CR ALLOYS AND NI-CR BILAYERS
    APPELBAUM, A
    EIZENBERG, M
    BRENER, R
    JOURNAL OF APPLIED PHYSICS, 1984, 55 (04) : 914 - 919
  • [38] Crystalline reconstruction in Ni-Cr-Fe/Ni-Fe films
    Lin, T
    Mauri, D
    York, B
    Rice, PM
    APPLIED PHYSICS LETTERS, 2004, 84 (03) : 386 - 388
  • [39] MAGNETIC PROPERTIES OF NI-CR ALLOYS
    BESNUS, MJ
    GOTTEHRER, Y
    MUNSCHY, G
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1972, 49 (02): : 597 - +
  • [40] Solidification shrinkage of Ni-Cr alloys
    Xiao, Feng
    Yang, Renhui
    Fang, Liang
    Zhang, Chi
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 132 (1-2): : 193 - 196