Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development

被引:1
|
作者
Zhang, Jie [1 ]
Sun, Kangwei [1 ]
Wang, Yu [1 ]
Qian, Wenjun [1 ]
Sun, Litao [2 ]
Shen, Jiazhi [2 ]
Ding, Zhaotang [2 ]
Fan, Kai [1 ]
机构
[1] Qingdao Agr Univ, Coll Hort, Qingdao 266109, Shandong, Peoples R China
[2] Shandong Acad Agr Sci, Tea Res Inst, Jinan 250100, Shandong, Peoples R China
关键词
Camellia sinensis; Phloem exudates; Amino acid; Amino acid permease; Source to sink transport; PHLOEM; NITROGEN; XYLEM; SAP; IDENTIFICATION; REMOBILIZATION; MAIZE;
D O I
10.1007/s00299-023-03110-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development.Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.[ABSTRACT]
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development
    Jie Zhang
    Kangwei Sun
    Yu Wang
    Wenjun Qian
    Litao Sun
    Jiazhi Shen
    Zhaotang Ding
    Kai Fan
    [J]. Plant Cell Reports, 2024, 43
  • [2] Transcriptomic and GC-MS Metabolomic Analyses Reveal the Sink Strength Changes during Petunia Anther Development
    Yue, Yuanzheng
    Tian, Shaoze
    Wang, Yu
    Ma, Hui
    Liu, Siyu
    Wang, Yuqiao
    Hu, Huirong
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (04)
  • [3] Comparative Transcriptomic and Metabolomic Analyses Reveal the Regulatory Effect and Mechanism of Tea Extracts on the Biosynthesis of Monascus Pigments
    Li, Wen-Long
    Hong, Jia-Li
    Lu, Jin-Qiang
    Tong, Shan-Gong
    Ni, Li
    Liu, Bin
    Lv, Xu-Cong
    [J]. FOODS, 2022, 11 (20)
  • [4] Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development
    Gao, Yuyao
    Yao, Yanli
    Chen, Xin
    Wu, Jianyang
    Wu, Qingsong
    Liu, Shenghui
    Guo, Anping
    Zhang, Xiumei
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity
    Xie, Guanwen
    Zou, Xiuzai
    Liang, Zishan
    Wu, Duan
    He, Jiankuang
    Xie, Kaicheng
    Jin, Honglei
    Wang, Hongbin
    Shen, Qi
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Integrated Metabolomic and Transcriptomic Analyses Reveal the Regulatory Mechanism Underlying the Accumulation of Anthocyanins in Cornus officinalis pericarp
    Qin, Yue
    Chen, Xuanmeng
    Yang, Jiahui
    Gao, Jing
    Zhang, Gang
    Yan, Yonggang
    Yang, Xinjie
    Zhang, Xiaofei
    Chen, Ying
    [J]. HORTICULTURAE, 2024, 10 (06)
  • [7] Integrated lipidomic and transcriptomic analyses reveal the mechanism of lipid biosynthesis and accumulation during seed development in sesame
    Zhang, Yujuan
    Gong, Huihui
    Cui, Xinxiao
    Gao, Chunhua
    Li, Nana
    Pu, Yanyan
    Zhang, Xiurong
    Zhao, Junsheng
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [8] Integrated Transcriptomic and Metabolomic Analyses Reveal the Molecular and Metabolic Basis of Flavonoids in Areca catechu L.
    Lai, Jun
    Li, Chun
    Zhang, Yueran
    Wu, Zeyong
    Li, Weiguan
    Zhang, Zhonghui
    Ye, Weizhen
    Guo, Hao
    Wang, Chao
    Long, Tuan
    Wang, Shouchuang
    Yang, Jun
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (12) : 4851 - 4862
  • [9] Integrated transcriptomic and metabolomic analyses reveal transcriptional regulatory network for phenolic acid biosynthesis in potato tubers
    Wang, Weilu
    Liu, Zhen
    Qi, Zheying
    Li, Zhitao
    Zhu, Jinyong
    Chen, Limin
    Li, Yuanming
    Bi, Zhenzhen
    Yao, Panfeng
    Sun, Chao
    Liu, Yuhui
    [J]. FOOD BIOSCIENCE, 2024, 62
  • [10] Integrated transcriptomic and metabolomic analyses revealed the molecular mechanism of terpenoid formation for salicylic acid resistance in Pulsatilla chinensis callus
    Dong, Yanjing
    Qin, Qian
    Zhong, Guoyue
    Mu, Zejing
    Cai, Yating
    Wang, Xiaoyun
    Xie, Huan
    Zhang, Shouwen
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 13