TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition

被引:5
|
作者
Wang, Kaixuan [1 ]
Deng, Hongmin [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, 24,Sect 1,First Ring Rd, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; action recognition; graph convolutional networks; lightweight;
D O I
10.3390/s23125593
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
For skeleton-based action recognition, graph convolutional networks (GCN) have absolute advantages. Existing state-of-the-art (SOTA) methods tended to focus on extracting and identifying features from all bones and joints. However, they ignored many new input features which could be discovered. Moreover, many GCN-based action recognition models did not pay sufficient attention to the extraction of temporal features. In addition, most models had swollen structures due to too many parameters. In order to solve the problems mentioned above, a temporal feature cross-extraction graph convolutional network (TFC-GCN) is proposed, which has a small number of parameters. Firstly, we propose the feature extraction strategy of the relative displacements of joints, which is fitted for the relative displacement between its previous and subsequent frames. Then, TFC-GCN uses a temporal feature cross-extraction block with gated information filtering to excavate high-level representations for human actions. Finally, we propose a stitching spatial-temporal attention (SST-Att) block for different joints to be given different weights so as to obtain favorable results for classification. FLOPs and the number of parameters of TFC-GCN reach 1.90 G and 0.18 M, respectively. The superiority has been verified on three large-scale public datasets, namely NTU RGB + D60, NTU RGB + D120 and UAV-Human.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [2] A lightweight graph convolutional network for skeleton-based action recognition
    Pham, Dinh-Tan
    Pham, Quang-Tien
    Nguyen, Tien-Thanh
    Le, Thi-Lan
    Vu, Hai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 3055 - 3079
  • [3] Lightweight Multiscale Spatio-Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Zheng, Zhiyun
    Yuan, Qilong
    Zhang, Huaizhu
    Wang, Yizhou
    Wang, Junfeng
    BIG DATA MINING AND ANALYTICS, 2025, 8 (02): : 310 - 325
  • [4] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [5] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598
  • [6] Temporal Receptive Field Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhang, Qingqi
    Wu, Ren
    Nakata, Mitsuru
    Ge, Qi-Wei
    2024 International Technical Conference on Circuits/Systems, Computers, and Communications, ITC-CSCC 2024, 2024,
  • [7] Spatial Graph Convolutional and Temporal Involution Network for Skeleton-based Action Recognition
    Wan, Huifan
    Pan, Guanghui
    Chen, Yu
    Ding, Danni
    Zou, Maoyang
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 204 - 209
  • [8] Temporal Receptive Field Graph Convolutional Network for Skeleton-based Action Recognition
    Zhang, Qingqi
    Wu, Ren
    Nakata, Mitsuru
    Ge, Qi-Wei
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [9] A Lightweight Architecture Attentional Shift Graph Convolutional Network for Skeleton-Based Action Recognition
    Li, Xianshan
    Kang, Jingwen
    Yang, Yang
    Zhao, Fengda
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (03)
  • [10] Skeleton-Based Action Recognition with Shift Graph Convolutional Network
    Cheng, Ke
    Zhang, Yifan
    He, Xiangyu
    Chen, Weihan
    Cheng, Jian
    Lu, Hanqing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 180 - 189