Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli

被引:4
|
作者
Orhan, Halit [1 ]
Caglar, Murat [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkiye
[2] Erzurum Tech Univ, Fac Sci, Dept Math, TR-25100 Erzurum, Turkiye
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
Hankel determinant; Carlson-Shaffer operator; Lemniscate of Bernoulli; holomorphic function; univalent function; Fekete-Szego problem; starlike function; Zalcman functional; EARLY COEFFICIENTS; UNIVALENT; STARLIKE; SUBCLASS; INVERSE;
D O I
10.3390/math11051147
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this investigation is to obtain sharp upper bounds for Fekete-Szego functional and the third Hankel determinant for a certain subclass SL*(u, v, alpha) of holomorphic functions defined by the Carlson-Shaffer operator in the unit disk. Finally, for some special values of parameters, several corollaries were presented.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli
    Raza M.
    Malik S.N.
    Journal of Inequalities and Applications, 2013 (1)
  • [2] Third Hankel Determinant for a Subclass of Univalent Functions Associated with Lemniscate of Bernoulli
    Ullah, Najeeb
    Ali, Irfan
    Hussain, Sardar Muhammad
    Ro, Jong-Suk
    Khan, Nazar
    Khan, Bilal
    FRACTAL AND FRACTIONAL, 2022, 6 (01)
  • [3] HANKEL DETERMINANT FOR A CLASS OF ANALYTIC FUNCTIONS RELATED WITH LEMNISCATE OF BERNOULLI
    Sahoo, Ashok Kumar
    Patel, Jagannath
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 6 (02): : 170 - 177
  • [4] Hankel Determinant and Toeplitz Determinant on the Class of Bazilevic Functions Related to the Bernoulli Lemniscate
    Asih, Ni Made
    Fitri, Sa'adatul
    Wibowo, Ratno Bagus Edy
    Marjono
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02): : 1290 - 1301
  • [5] The sharp bound for the third Hankel determinant of the inverse of functions associated with lemniscate of Bernoulli
    Viswanadh, G. K. Surya
    Rath, Biswajit
    Kumar, K. Sanjay
    Krishna, D. Vamshee
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (07)
  • [6] On fourth Hankel determinant for functions associated with Bernoulli's lemniscate
    Arif, Muhammad
    Umar, Sadaf
    Raza, Mohsan
    Bulboaca, Teodor
    Farooq, Muhammad Umar
    Khan, Hasan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1777 - 1787
  • [7] Upper Bound of the Third Hankel Determinant for a Subclass of Close-to-Convex Functions Associated with the Lemniscate of Bernoulli
    Srivastava, Hari M.
    Ahmad, Qazi Zahoor
    Darus, Maslina
    Khan, Nazar
    Khan, Bilal
    Zaman, Naveed
    Shah, Hasrat Hussain
    MATHEMATICS, 2019, 7 (09)
  • [8] UPPER BOUND OF THE THIRD HANKEL DETERMINANT FOR A SUBCLASS OF q-STARLIKE FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI
    Khan, Nazar
    Shafiq, Muhammad
    Darus, Maslina
    Khan, Bilal
    Ahmad, Qazi Zahoor
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 53 - 65
  • [9] Third Hankel Determinant for Bazilevic Functions Related to a Leaf Like Domain
    Kumar, V. Suman
    Sharma, R. B.
    Haripriya, M.
    11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS, 2019, 2112
  • [10] CERTAIN COEFFICIENT INEQUALITIES ASSOCIATED WITH HANKEL DETERMINANT FOR A SPECIFIC SUBFAMILY OF HOLOMORPHIC MAPPINGS
    Deekonda, Vamshee Krishna
    Dasumahanthi, Shalini
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2022, 111 (125): : 127 - 132