Research on a Decision Tree Classification Algorithm Based on Granular Matrices

被引:0
|
作者
Meng, Lijuan [1 ]
Bai, Bin [1 ,2 ,3 ,4 ]
Zhang, Wenda [5 ]
Liu, Lu [1 ,2 ,3 ,4 ,6 ]
Zhang, Chunying [1 ,2 ,3 ,4 ,6 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063210, Peoples R China
[2] North China Univ Sci & Technol, Hebei Engn Res Ctr Intelligentizat Iron Ore Optimi, Tangshan 063210, Peoples R China
[3] North China Univ Sci & Technol, Hebei Key Lab Data Sci & Applicat, Tangshan 063210, Peoples R China
[4] North China Univ Sci & Technol, Key Lab Engn Comp Tangshan City, Tangshan 063210, Peoples R China
[5] North China Univ Sci & Technol, Coll Min Engn, Tangshan 063210, Peoples R China
[6] North China Univ Sci & Technol, Tangshan Intelligent Ind & Image Proc Technol Inno, Tangshan 063210, Peoples R China
关键词
classification; decision tree; granular computing; granular structure; granular matrix; similarity metric matrix; classification accuracy; FEATURE-SELECTION; FUZZY;
D O I
10.3390/electronics12214470
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The decision tree is one of the most important and representative classification algorithms in the field of machine learning, and it is an important technique for solving data mining classification tasks. In this paper, a decision tree classification algorithm based on granular matrices is proposed on the basis of granular computing theory. Firstly, the bit-multiplication and bit-sum operations of granular matrices are defined. The logical operations between granules are replaced by simple multiplication and addition operations, which reduces the operation time. Secondly, the similarity between granules is defined, the similarity metric matrix of the granular space is constructed, the classification actions are extracted from the similarity metric matrix, and the classification accuracy is defined by weighting the classification actions with the probability distribution of the granular space. Finally, the classification accuracy of the conditional attribute is used to select the splitting attributes of the decision tree as the nodes to form forks in the tree, and the similarity between granules is used to judge whether the data types in the sub-datasets are consistent to form the leaf nodes. The feasibility of the algorithm is demonstrated by means of case studies. The results of tests conducted on six UCI public datasets show that the algorithm has higher classification accuracy and better classification performance than the ID3 and C4.5.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Research on Heartbeat Classification Algorithm Based on CART Decision Tree
    Xie, Tiantian
    Li, Runchuan
    Zhang, Xingjin
    Zhou, Bing
    Wang, Zongmin
    2019 8TH INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS (ISNE), 2019,
  • [2] Decision Tree Classification Algorithm and Research on Its Improvement
    Zhang Yihua
    Li Maoqing
    Wang Yuan
    ICCSE 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2008, : 1093 - 1096
  • [3] Stream Classification Algorithm Based on Decision Tree
    Guo, Jinlin
    Wang, Haoran
    Li, Xinwei
    Zhang, Li
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [4] A classification algorithm based on the complete decision tree
    Djukova E.V.
    Peskov N.V.
    Pattern Recognition and Image Analysis, 2007, 17 (3) : 363 - 367
  • [5] Packet classification algorithm based on the statistical decision tree
    Qian, Meng
    Dong, Xiao-Ming
    Hu, Hao-Ran
    Lin, Jia-Jun
    Hu, Wan-Bao
    Huadong Ligong Daxue Xuebao /Journal of East China University of Science and Technology, 2008, 34 (03): : 432 - 437
  • [6] Information classification algorithm based on decision tree optimization
    Hongbin Wang
    Tong Wang
    Yucai Zhou
    Lianke Zhou
    Huafeng Li
    Cluster Computing, 2019, 22 : 7559 - 7568
  • [7] A packet classification algorithm based on improved decision tree
    Anyang Institute of Technology, Anyang, Henan, 455000, China
    1600, Academy Publisher (08):
  • [8] Information classification algorithm based on decision tree optimization
    Wang, Hongbin
    Wang, Tong
    Zhou, Yucai
    Zhou, Lianke
    Li, Huafeng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S7559 - S7568
  • [9] Research on Multiple Classification Based on Improved SVM Algorithm for Balanced Binary Decision Tree
    Xie, Wenhao
    She, Yanhong
    Guo, Qiao
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [10] The research of decision tree learning algorithm in technology of data mining classification
    Department of Mechanical and Electrical Information, Lishui Vocational and Technical College, ZheJiang, China
    J. Convergence Inf. Technol., 2012, 10 (216-223):