Non-uniqueness of Leray-Hopf solutions to the forced fractional Navier-Stokes equations in three dimensions, up to the J. L. Lions exponent

被引:0
|
作者
Khor, Calvin [1 ]
Miao, Changxing [2 ]
Su, Xiaoyan [3 ,4 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing, Peoples R China
[4] Beijing Normal Univ, Beijing, Peoples R China
关键词
D O I
10.1112/blms.12889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that for & alpha;& ISIN;(1/2,5/4)$\alpha \in (1/2,5/4)$, there exists a force f$f$ and two distinct Leray-Hopf flows u1,u2$u_1,u_2$ solving the forced fractional Navier-Stokes equation starting from rest. This shows that the J. L. Lions exponent is sharp in the class of Leray-Hopf solutions for the forced fractional Navier-Stokes equation.
引用
收藏
页码:2705 / 2717
页数:13
相关论文
共 21 条