FvMYB44, a Strawberry R2R3-MYB Transcription Factor, Improved Salt and Cold Stress Tolerance in Transgenic Arabidopsis

被引:5
|
作者
Li, Wenhui [1 ]
Wei, Yangfan [1 ]
Zhang, Lihua [1 ]
Wang, Yu [2 ]
Song, Penghui [3 ]
Li, Xingguo [1 ]
Han, Deguo [1 ]
机构
[1] Northeast Agr Univ, Coll Hort & Landscape Architecture, Natl Local Joint Engn Res Ctr Dev & Utilizat Small, Key Lab Biol & Genet Improvement Hort Crops Northe, Harbin 150030, Peoples R China
[2] Heilongjiang Acad Agr Sci, Hort Branch, Harbin 150040, Peoples R China
[3] Heilongjiang Acad Agr Sci, Inst Rural Revitalizat Sci & Technol, Harbin 150028, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
Fragaria vesca; FvMYB44; salt stress; cold stress; Arabidopsis thaliana; SUPEROXIDE-DISMUTASE; GENE-EXPRESSION; PLANT-RESPONSES; INCREASES COLD; CLIMATE-CHANGE; CHLOROPHYLL-A; DROUGHT; CLONING; OVEREXPRESSION; IDENTIFICATION;
D O I
10.3390/agronomy13041051
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
MYB (v-MYB avian myeloblastosis viral oncogene homolog) transcription factor (TF) family has numerous members with complex and diverse functions, which perform an integral role in regulating the plant's response to adversity. This study used cloning to obtain a novel MYB TF gene from the diploid strawberry Fragaria vesca, which was given the designation FvMYB44. Subcellular localization results showed that the protein of FvMYB44 was a nuclear localization protein. The resistance of Arabidopsis thaliana to salt and low temperature stresses was greatly enhanced by the overexpression of FvMYB44. When subjected to salt and temperature stress, transgenic plants showed higher proline and chlorophyll concentrations and higher superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities than wild-type (WT) and unloaded line (UL) of A. thaliana. In contrast, WT and UL lines had higher malondialdehyde (MDA) content and reactive oxygen species ROS (O-2(-) and H2O2) content. These findings suggest that FvMYB44 may perform a role in controlling the response of A. thaliana to cold and salt stress.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] FvMYB24, a strawberry R2R3-MYB transcription factor, improved salt stress tolerance in transgenic Arabidopsis
    Wang, Shuaishuai
    Shi, Mengyun
    Zhang, Yang
    Xie, Xingbin
    Sun, Peipei
    Fang, Congbing
    Zhao, Jing
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 569 : 93 - 99
  • [2] Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis
    Li, X. W.
    Wang, Y.
    Yan, F.
    Li, J. W.
    Zhao, Y.
    Zhao, X.
    Zhai, Y.
    Wang, Q. Y.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (02)
  • [3] The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana
    Yu, Yuehua
    Ni, Zhiyong
    Chen, Quanjia
    Qu, Yanying
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 491 (03) : 642 - 648
  • [4] An R2R3-MYB Transcription Factor RmMYB108 Responds to Chilling Stress of Rosa multiflora and Conferred Cold Tolerance of Arabidopsis
    Dong, Jie
    Cao, Lei
    Zhang, Xiaoying
    Zhang, Wuhua
    Yang, Tao
    Zhang, Jinzhu
    Che, Daidi
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [5] Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
    Gao, Fei
    Zhou, Jing
    Deng, Ren-Yu
    Zhao, Hai-Xia
    Li, Cheng-Lei
    Chen, Hui
    Suzuki, Tatsuro
    Park, Sang-Un
    Wu, Qi
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 214 : 81 - 90
  • [6] A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis
    Yao, Luming
    Jiang, Yina
    Lu, Xinxin
    Wang, Biao
    Zhou, Pei
    Wu, Tianlong
    MOLECULAR BIOLOGY REPORTS, 2016, 43 (10) : 1089 - 1100
  • [7] Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis
    Xu, Fu-Chun
    Liu, Hui-Li
    Xu, Yun-Yun
    Zhao, Jing-Ruo
    Guo, Ya-Wei
    Long, Lu
    Gao, Wei
    Song, Chun-Peng
    PLANT CELL TISSUE AND ORGAN CULTURE, 2018, 133 (01) : 15 - 25
  • [8] Heterogeneous expression of the cotton R2R3-MYB transcription factor GbMYB60 increases salt sensitivity in transgenic Arabidopsis
    Fu-Chun Xu
    Hui-Li Liu
    Yun-Yun Xu
    Jing-Ruo Zhao
    Ya-Wei Guo
    Lu Long
    Wei Gao
    Chun-Peng Song
    Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 133 : 15 - 25
  • [9] A R2R3-MYB transcription factor from Lablab purpureus induced by drought increases tolerance to abiotic stress in Arabidopsis
    Luming Yao
    Yina Jiang
    Xinxin Lu
    Biao Wang
    Pei Zhou
    Tianlong Wu
    Molecular Biology Reports, 2016, 43 : 1089 - 1100
  • [10] PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance
    Shen, Xinjie
    Guo, Xinwei
    Guo, Xiao
    Zhao, Di
    Zhao, Wei
    Chen, Jingsheng
    Li, Tianhong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 112 : 302 - 311