MsImpute: Estimation of Missing Peptide Intensity Data in Label-Free Quantitative Mass Spectrometry

被引:3
|
作者
Hediyeh-Zadeh, Soroor [1 ,2 ,3 ,8 ]
Webb, Andrew I. [2 ,3 ,4 ]
Davis, Melissa J. [1 ,2 ,5 ,6 ,7 ]
机构
[1] WEHI, Bioinformat Div, Melbourne, Australia
[2] Univ Melbourne, Dept Med Biol, Melbourne, Australia
[3] WEHI, Colonial Fdn Hlth Ageing Ctr, Melbourne, Australia
[4] WEHI, Adv Technol & Biol Div, Melbourne, Australia
[5] Univ Melbourne, Fac Med Dent & Hlth Sci, Dept Clin Pathol, Melbourne, Australia
[6] Univ Queensland, Diamantina Inst, Brisbane, Australia
[7] Univ Adelaide, South Australian Immunogen Canc Inst, Adelaide, Australia
[8] Helmholtz Munich, Inst Computat Biol, Dept Computat Hlth, Munich, Germany
关键词
VALUE IMPUTATION; SOFTWARE; RANGE;
D O I
10.1016/j.mcpro.2023.100558
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Mass spectrometry (MS) enables high -throughput identification and quantification of proteins in complex biological samples and can provide insights into the global function of biological systems. Label -free quantification is cost-effective and suitable for the analysis of human samples. Despite rapid developments in label -free data acquisition workflows, the number of proteins quantified across samples can be limited by technical and biological variability. This variation can result in missing values which can in turn challenge downstream data analysis tasks. General purpose or gene expression -specific imputation algorithms are widely used to improve data completeness. Here, we propose an imputation algorithm designated for label -free MS data that is aware of the type of missingness affecting data. On published datasets acquired by data -dependent and data -independent acquisition workflows with variable degrees of biological complexity, we demonstrate that the proposed missing value estimation procedure by barycenter computation competes closely with the state-of-the-art imputation algorithms in differential abundance tasks while outperforming them in the accuracy of variance estimates of the peptide abundance measurements, and better controls the false discovery rate in label -free MS experiments. The barycenter estimation procedure is implemented in the msImpute software package and is available from the Bioconductor repository.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] THE EFFECTS OF NONIGNORABLE MISSING DATA ON LABEL-FREE MASS SPECTROMETRY PROTEOMICS EXPERIMENTS
    O'Brien, Jonathon J.
    Gunawardena, Harsha P.
    Paulo, Joao A.
    Chen, Xian
    Ibrahim, Joseph G.
    Gygi, Steven P.
    Qaqish, Bahjat F.
    ANNALS OF APPLIED STATISTICS, 2018, 12 (04): : 2075 - 2095
  • [2] Mass spectrometry label-free quantitative analysis of proteins
    Kopylov A.T.
    Zgoda V.G.
    Archakov A.I.
    Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, 4 (1) : 49 - 58
  • [3] Less label, more free: Approaches in label-free quantitative mass spectrometry
    Neilson, Karlie A.
    Ali, Naveid A.
    Muralidharan, Sridevi
    Mirzaei, Mehdi
    Mariani, Michael
    Assadourian, Garine
    Lee, Albert
    van Sluyter, Steven C.
    Haynes, Paul A.
    PROTEOMICS, 2011, 11 (04) : 535 - 553
  • [4] Mass Spectrometry-Based Label-Free Quantitative Proteomics
    Zhu, Wenhong
    Smith, Jeffrey W.
    Huang, Chun-Ming
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2010,
  • [5] Profiling protein expression by label-free quantitative mass Spectrometry
    Cutillas, P. R.
    Vanhaesebroeck, B.
    MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (08) : 14 - 14
  • [6] Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry
    Ono, Masaya
    Shitashige, Miki
    Honda, Kazufumi
    Isobe, Tomohiro
    Kuwabara, Hideya
    Matsuzuki, Hirotaka
    Hirohashi, Setsuo
    Yamada, Tesshi
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (07) : 1338 - 1347
  • [7] Label-free mass spectrometry - Critical mass
    Lederman, Lynne
    BIOTECHNIQUES, 2007, 42 (06) : 681 - 681
  • [8] Probe for Label-free Quantitative Analysis in Liquid Chromatography/Mass Spectrometry
    Atsumu Hirabayashi
    Masafumi Furukawa
    Mitsuhiro Umeda
    Tomomi Bando
    Yoshimitsu Orii
    Analytical Sciences, 2009, 25 : 67 - 71
  • [9] Probe for Label-free Quantitative Analysis in Liquid Chromatography/Mass Spectrometry
    Hirabayashi, Atsumu
    Furukawa, Masafumi
    Umeda, Mitsuhiro
    Bando, Tomomi
    Orii, Yoshimitsu
    ANALYTICAL SCIENCES, 2009, 25 (01) : 67 - 71
  • [10] On the Reproducibility of Label-Free Quantitative Cross-Linking/Mass Spectrometry
    Mueller, Fraenze
    Fischer, Lutz
    Chen, Zhuo Angel
    Auchynnikava, Tania
    Rappsilber, Juri
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2018, 29 (02) : 405 - 412